
SG24-5331-00

International Technical Support Organization

Lotus Domino Release 5.0:
A Developer’s Handbook

January 1999

Take Note!
Before using this information and the product it supports, be sure to read the general information in
the Special Notices section at the back of this book.

First Edition (January 1999)

This edition applies to Lotus Domino 5.0.

Comments may be addressed to: IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© International Business Machines Corporation 1999. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted rights. Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

16Views .
15Subforms .
15Forms .
15The Domino Database
15Domino Design Elements
14The Script Area
14The Reference View
13The Objects View
13The Programmer’s Pane
12The Launch Buttons
12The Window Tabs
11The Design Pane
10Managing Your Workspace

9
2 Lotus Domino Designer:
An Overview .

8Summary .
6Domino Administrator R5.0
4Notes R5.0 .
4Clients for Domino R5.0
2Services Offered by Domino Servers
2Domino Enterprise Server
1Domino Application Server
1Domino Mail Server
1Domino R5.0 Server
11 What is Lotus Domino?

xvComments Welcome
xiiiThe Team That Wrote This Redbook
xiiiPreface .

54Objects View .
54Giving the Form a Title
45Specifying Form Properties
45Forms .
454 Forms .

44Summary .
41Using Design Synopses
33Changing the Database Properties
27Creating a Database
27Domino Databases
27

3 Domino Design Elements:
Basics .

25
Easy Access to Enterprise Data

and Applications

24Multilingual Applications Support
24Multi-Client Applications Support
23Industry Standards Support
23

New Rapid Development Capabilities
in IDE .

22Domino User Interface Applets
22Page Designer
21Frameset Designer
20Outline Designer
17New Features of Domino Designer
16Action Buttons
16Tables .
16Shared Fields .
16Fields .

Contents iii

Contents

106Images Within Forms
103Buttons, Action Bar Buttons, and Hotspots .
101Computed Text
101Horizontal Rules
101Other Features of Forms
100Embedded File Upload Control

99Embedded Folder Pane
99Embedded Group Scheduling Control
97Embedded View
97Embedded Outline Control
97Embedded Date Picker
97Embedded Navigators
96Embedded Elements
89Table Properties
88Merge and Split Cells
87Create Tables Within Tables
85Using Tables .
84Creating a Collapsible Section
84Working With Collapsible Sections
83Creating a Layout Region
83Working With Layout Regions
81

Displaying a Different Form to Web Users
and Notes Users

80Computed Subforms
79Removing Subforms
78Subform Properties
77Sharing Design Elements With Subforms
76Field Events .
71Using the $$Return Field
70Rich Text Field (RTF) Applet
64Field Properties
61Sharing and Reusing a Field
58Performing a Test Run
57Creating a Field .

141Identifying Unread Documents
138Overview of Styles
137Naming Views
137Hints and Tips on Designing Views
133Using HTML Formatting for Views
133Using Java Applets for Display
131Using the Default Display
131Views and the Web
129Working With Views as a Developer
127Creating a Button on the Action Bar
127Personal Views
126Shared, Personal-on-First-Use Views
126Shared Views
126Shared and Private Views
124Summary .
122Creating Calendar Views
120Editing View Columns
116Working With View Properties
112Creating Views
111What is a Navigator?
111What is a Folder?
111What is a View?
1115 Views, Folders, and Navigators .

110Summary .
110

Using a LotusScript Agent to Capture CGI
Variables

109Using a Field to Capture CGI Variables . .
107

Table of CGI Variables Supported by
Domino .

107Using CGI Variables
107Alternate Text
107Using Image Resources
106Importing Pictures
106Copying Images

iv Lotus Domino Release 5.0: A Developer’s Handbook

173Outlines .
172Changing the Layout of a Frameset
169Creating a Frameset
169Framesets .
168Launching Pages
167Using Pages
165Specifying Page Properties
164Creating a New Page
163Pages .
1636 New R5.0 Design Elements

161Summary .
160Including a Navigator in the View Menu .
160Testing a Navigator
160

Adding an Action Using @Functions or
LotusScript

159Adding an Action to a Navigator Object .
157Creating a Navigator
156Navigator Actions
156Navigator Objects
156Using Navigators
155Creating a Write Access List
155Creating a Read Access List
155Managing Access to Views and Folders
154Designing a Folder
151Exporting and Importing Views
148Sorting Documents in Views
147Indenting Response Documents
147Formatting Numbers in Columns
146Formatting Date and Time Columns
145Hiding Views
143Embedding Views
143Presenting Views to Users
142Creating an All by Category View
141Using Categories in Views

201
WebQueryOpen and WebQuerySave

Agents .

201Running Multiple Instances of an Agent .
200Agents and the Web
197Troubleshooting Agents
197

To Disable All Automated Agents in a
Database .

197To Disable Individual Agents
197Disabling Scheduled Agents
196Debugging Agents
196Checking the Agent Log
195

Testing an Agent Before Copying it to a
Live Database

195Testing an Agent During Development . .
195Testing an Agent
194Displaying the Agent Pop-up Menu
191Specifying What the Agent Should Do . . .
190Selecting Documents to be Processed . . .
188Scheduling the Agent
187Naming the Agent
187Creating an Agent
186Restricted and Unrestricted Agents
185Access Control .
185About Agents .
1857 Agents .

183Summary .
183Other .
183Script Libraries
182Shared Fields
182Applets .
180Images .
179Resources .
176Embedded Outline
175Creating a New Outline

Contents v

235Authentication on the Web
233Using Encryption for Field Security
233Use of Hide-When Formulas
232Controlled Access Sections
231Combining Readers and Authors Fields .
230Editor Access
228Read Access
227Controlling Access to Documents
227

Preventing Printing, Forwarding, and
Copying of Documents

224Controlling Access to Forms
223Controlling Access to Views
223Controlling Access to Views and Forms
222

Using Directory Link Files to Control Access
to an Application

222
Using Outline Control to Hide Parts of an

Application

220Changing the ACL Programmatically . . .
220

Maximum Internet Name and Password
Access .

219Enforce Consistent ACL
218Roles in the ACL
214Setting Up and Refining the ACL
212

Using the Access Control List to Control
Access to an Application

210
Overview of Domino Security

Architecture

209Controlling Access to Domino Data
2098 Securing Your Application

207Summary .
205Using Agents — Advanced Topics
203Creating a Web Page Counter
202

Using a LotusScript Agent to Capture CGI
Variables

202
Using the @URLOpen Command to Call

Agents .

265Customizing Search Result Forms
260Creating a TeamRoom Search
259Customizing Search and Result Forms
257Full Text Indexing
257Search Site URLs
256Search View URLs
256Search-Related URLs
255Adding Search Capabilities to Your Web Site .
2559 Searching

253Summary .
252Distinguishing True Security Features . . .
250Key Design Issues
248

Developing a Plan for Securing Your
Application

248Backup and Restore
247

APIs for Customized Authentication,
Encryption, and Signing

245Access Control for HTML and Other Files .
242Using Signatures for Security
242Other Security Options and Considerations .
242Hiding the Design of a Database
242

Controlling if Users Paste Documents into
Database .

242Password Field
241Using @UserNameList
241Using @ClientType
240Using @UserName
240Using @UserRoles
240Programming Considerations
239Defining Web Users
238When to Use Internet Security
238Domino and SSL
236Secure Sockets Layer (SSL)
235HTTP Basic Authentication

vi Lotus Domino Release 5.0: A Developer’s Handbook

305Catching Errors at Compile Time
303Using a Template Database
301Using Script Libraries
300Reserved Fields
299Use Consistent Variable Names
298General Suggestions
298

LotusScript Programming Tips and
Considerations

293How Scripts and Formulas Are Executed .
293Using LotusScript in Web Applications . .
292Action Object
288Event Type and Sequence
286The Event Model
286Programming With LotusScript
286Using Domino Objects From Java
284

Understanding Front-end and Back-end
Classes .

282Using Domino Objects From LotusScript .
281Object Hierarchy
278Domino Back-End Objects
277Domino Front-End UI Objects
277The Domino Object Model
275LotusScript .
272Formula Language
271Simple Actions
271Programming in Notes
27110 Programming for Domino

269Summary .
269Customizing Search Site Result Forms . . .
268

How Users Search Using a Search Site
Database .

268Multi-Database Full Text Indexes
266Creating a Search Site Database
266Search Site Databases

351Benefits of Using CORBA
350Adding CORBA to the Picture
349

Agents, Applets, Applications, and
Servlets .

347Java .
347

11 Advanced Domino
Programming

345Summary .
344The Notes API
344External Tools .
341

Accessing CORBA Applets via
LiveConnect

341Accessing an Applet From JavaScript . . .
341

LiveConnect — JavaScript Access to the
Domino Classes

337Cookies and Domino
332Examples of Adding JavaScript to Forms .
332

Where JavaScript Gives You Access in
Domino .

329
Using JavaScript in Domino Design

Elements .

328Using JavaScript
326Tracing Programs Without a Debugger . .
322How to Enable the Debugger
321Using the Debugger
320Error Handling
314New Domino Objects in Domino R5.0 . . .
310

Working With a Rich Text Item and Rich
Text Style

310
Using Validation Formulas and

QuerySave

309Making Field Value Changes Effective . . .
308

Using the Evaluate Function to Combine
LotusScript and Formulas

306When to Use Formulas and LotusScript . .
305Improving Form Performance

Contents vii

398Overview .
398Using the LSX Toolkit
397Using an LSX .
396What is a Lotus Custom Object?
396

The Lotus Custom Object Toolkit (formerly
known as the LSX Toolkit)

395
Considerations Before Using OLE

Embedding/Automation

392Troubleshooting
390

Using OLE Automation Without
Embedding

385Embedding OLE Objects
383

LotusScript Functions and Methods to
Use for OLE Applications

382Classes of OLE Objects
381

Accessing Other Applications From Notes
Using OLE Automation

379Runtime Errors and Debugging
376More Examples
373

Sending Information From Excel Using
Domino .

372
Accessing the Domino Object Model

Using OLE Automation

371Domino and OLE Automation
365Coding the CORBA Applet
363CORBA and Domino
362Internet Inter-ORB Protocol (IIOP)
362CORBA Architecture
361Benefits of Using CORBA
361CORBA/IIOP .
357Creating a Java Agent
355Applet Calls to lotus.notes.noi Package . .
353Remote Calls to lotus.notes.noi Package . .
353Runtime Requirements
352Compiling and Running a Java Program .
351How and When to Use CORBA

431
Lesson 2 - Design the Outlook as

Thoroughly as Possible

431Lesson 1 - Use Professional Graphics
431Creating Your Application
430Lesson 7 - Project Scope Creep
430Lesson 6 - Even Domino Has Limitations .
430Lesson 5 - Planning Your Application . . .
430

Lesson 4 - Understanding the
Deliverables

429
Lesson 3 - Ensure That There is a Real

Business Need

429Lesson 2 - Communication
429Lesson 1 - Getting a Business Sponsor . . .
429Before You Write a Single Line of Code
42912 Development Do’s and Don’ts .

428Summary .
427LSX Registration
427LSX Installation
427The LSX Runtime Environment
427Deploying an LSX
426The LSXRUN Tool
425The LSXTEST Tool
425Testing an LSX .
420Using LotusScript System Services
419Accessing LSX Class Property Arguments .
417Accessing LSX Class Method Arguments .
416Using Data Type Descriptions
415Using LSX Data Types
411Creating an LSX
408LSX Design Decisions
404

Understanding the C++ LSX Class
Framework

401Considering the Toolkit Design
399What the LSX Toolkit Contains

viii Lotus Domino Release 5.0: A Developer’s Handbook

444Creating the Lotus Notes Database
443

Creating a Simple RealTime DB2
Connection

442The DECS Administrator Navigator
441Using the Connection Server Administrator .
441Configuring DECS
440Running LCTEST
440Testing Connections With LCTEST
439Setting Up Connectivity to DB2
438Supported Data Sources
437Installing and Running DECS
437

13 Introducing DECS and
Database Connectivity

436Summary .
435Lesson 2 - Get Feedback From Your Users .
435Lesson 1 - Define a Maintenance Server . .
435

When Your Application is Deployed in
Production

435
Lesson 3 - Document the Application

Requirements

434
Lesson 2 - Supply an Installation Test

Verification Case

434
Lesson 1 - Perform Quality Assurance of

the Application

434
Handing Over Your Application to

Production

432
Lesson 9 - Be Aware of Performance

Options .

432Lesson 8 - Document Your Application . .
432

Lesson 7 - Provide Meaningful Error
Messages

432
Lesson 6 - Use the Appropriate Design

Elements and Events

431Lesson 5 - Try to Avoid Hard Coding . . .
431Lesson 4 - Comment Your Code
431

Lesson 3 - Try to Standardize on a Web
Browser .

493
Known Limitations or Problems With

NotesSQL

489
Summary of Supported ODBC SQL

Grammar

486Data Types .
486View Column Definitions
485Using Notes Views as Indexes
484Column, Index, Table, and View Names .
482

Using SQL Tables From Derived Forms
and Views

481The Universal Relation
481Mapping Notes Names to SQL Names . . .
480Connecting to a Data Source
476Adding a Lotus Notes Data Source
475Installing NotesSQL
474Hardware and Software Requirements . .
474When to Use NotesSQL
473Technical Advantages
469

SQL Grammar Conformance Level of
NotesSQL

468What is ODBC?
467NotesSQL .
467

14 Using Other Database
Connectivity Tools

466Summary .
463

Updating Data From Notes to an External
Source .

452
Reading Data From an External Source

into a Notes Form

452Lotus Connectors LCO
449Accessing More Than One Table
448Running the DECS Activity
448

Populating the Lotus Notes Database
With Key Data

446Creating the Activity Document

Contents ix

573
Running Checks Using

Pseudo-Translation

562
Setting up the Project and Tagging the

Database .

561Localizing an Application
561The Synchronizer
560The Standalone Tagger
559The WorkBench
559What is Tagging?
558Domino Global WorkBench Databases . .
558

Concepts, Databases, and Tools in Domino
Global WorkBench

55515 Domino Global WorkBench . . .

554Summary .
551

Using @DB Functions to Access Other
Databases Through ODBC

550Running Multiple Instances of an Agent .
547Digging Deeper
546How Does This Work?
541Server Side Processing for Web Applications .
520Differences Between LS:DO and ODBC
517LotusScript:DataObject (LS:DO)
515What is ODBC?
514Data Resource Access
513LotusScript Data Objects and ODBC
512

To Configure and Run Domino Driver for
JDBC Using IBM WebSphere

512Using IBM WebSphere Application Server .
511Using IBM VisualAge for Java Version 1.0 .
505Creating a Connection
502What is JDBC?
502Domino Driver for JDBC
498

Example: Using NotesSQL With Microsoft
Active Server Pages (ASP)

494
Example: Accessing Notes From Visual

Basic .

613Using the Workflow Document
608

Creating a Database Using the Approval
Cycle Template

608Workflow Design Considerations
607What is Workflow?
60716 Domino Workflow

606Summary .
603Create a Design Synopsis
603Make a Backup
603Preparing an Existing Database
602Keep Translators Informed
601LotusScript .
600Pay Attention to Length Limitations
600Fonts .
598Keywords .
598Handling Translatable Lists
596Concatenated Sentences
596

Avoid Shared/Personal on First Use
Folders or Views

595
Exclude Paragraphs From Translation

Using the DO_NOT_TAG Style

595Hide-When Formulas
595Use Formulas Instead of Simple Actions .
594Temporary Variables
593Use Aliases .
589In General .
589

Preparing Your Database — Tips for
Developers

588
The Difference Between Updating and

Rebuilding

587
Skipping Terms During Tagging Versus

Marking Terms as “Do Not Translate” .

585Building Language Databases
582Translation .
580Preparing the Glossary for Translation . .

x Lotus Domino Release 5.0: A Developer’s Handbook

653Special Notices

651CORBA Objects
647Appendix C CORBA Internals

645
Keys for Editing Documents or Designing

Domino Objects

645Dialog Boxes
644Function Keys
643Workspace Keys
643Appendix B Shortcuts

641
Searching for Text with Domino Search

URLs .

639
Advantages of Using Keys Instead of

Universal ID

638Opening Documents by Key
638Opening an Anchor Link
637

Opening, Editing, and Deleting
Documents

635
Opening Framesets, Pages, Forms,

Navigators, and Agents

633Opening Servers, Databases, and Views . .
631Domino URL Command Syntax
631Appendix A Domino URLs

629Summary .
629Denying a Request
627Approving a Request
622Submitting a New Form for Approval . . .
620Creating a New Request
620The Major Fields
619

A Closer Look at the ApprovalLogic
Subform .

615
How is the Approval Cycle Database

Organized?

615How Does a Form Flow?
615Approval Cycle Database: Design
613Working With the Request

675ITSO Redbook Evaluation

665Index .

661IBM Intranet for Employees
661How To Get ITSO Redbooks

659Redbooks on CD-ROMs
658Other Lotus-Related ITSO Publications
657ITSO Lotus Publications
657Related ITSO Publications

Contents xi

xii Lotus Domino Release 5.0: A Developer’s Handbook

This document describes how to develop applications using Lotus Domino
Release 5.0.

The earlier chapters in the book introduce some of the basic design elements
of a Domino database such as the database itself, forms, views, folders, and
navigators. Those readers that are familiar with developing applications
using earlier releases of Lotus Domino may want to move straight to the
chapters that introduce the new features in Domino 5.0, such as framesets,
pages, outlines, resources and headlines.

The book then describes how to use the programming languages available in
Domino Designer; the formula language, LotusScript, JavaScript, Java, IIOP
and CORBA, C++ API and the LSX toolkit. Some good practical advice on
Domino development do’s and don’ts is then outlined before discussing the
Domino Enterprise Connectors (DECS) which are used to access data from
external data sources, along with chapters describing how to use NotesSQL,
ODBC, and the LotusScript Data Object (LSDO).

The book then explains how to create multilingual international applications
for Domino and the Web using the Global Workbench tool.

Finally, the topic of creating workflow applications with the Approval Cycle
template is covered with an in-depth look at the LotusScript in the
ApprovalLogic subform.

This redbook was written for Domino technical specialists and
programmers, customers, IBM Business Partners, and the IBM and Lotus
community who need a good technical understanding of how to develop
applications using Lotus Domino R5.0.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Center at Lotus
in Cambridge, Massachusetts, USA.

Fiona Collins is an International Technical Support Specialist for Notes and
Domino at the International Technical Support Organization Center at Lotus
Development, Cambridge, Massachusetts. She manages projects whose
objective it is to produce redbooks on all areas of Domino. Before joining the

Preface

xiii

ITSO in 1996, she provided technical support for Lotus Notes/Domino and
the AS/400, for Lotus and IBM in the UK.

David Morrison is a senior Lotus Notes consultant working for IBM
e-business services in the United Kingdom. David specializes in designing
and developing large scale Internet and data integration applications based
on Lotus Notes and Domino technology. David has over 10 years experience
working in the IT industry, with five of these spent working with Lotus
Notes and Domino.

Søren Peter Nielsen works as an IT Architect for IBM Global Services in
Denmark with Domino development and Domino infrastructure. During his
more than 15 years at IBM, Søren has worked with solutions for industries
like Small and Medium Business, Banking, Insurance, News & Media,
Manufacturing, Public Sector, Travel & Transportation, and Petroleum.
Søren is a Certified Lotus Professional at the Principal level in Application
Development and System Administration.

Sami Serpola works in IBM e-business Services in Finland as a Lotus Notes
and Domino Application Development Consultant, designing and
developing Lotus Notes and Domino solutions for IBM customers.

Reinhold Strobl works for the IBM Product Support Services Department in
Vienna, Austria, where he provides specialist support to customers for Lotus
Domino and support for other aspects of application development. Before
joining the IBM support organization, Reinhold was a software designer and
developer working out of an IBM software development laboratory.

A number of people have provided support and guidance. In particular, we
would like to thank Chris Reckling, Product Manager for Domino Designer.
In addition, we would like to thank the following people from Lotus
Cambridge (unless otherwise noted):

• Mike Bisacre

• Janet Bowers, Lotus Notes Application Center of Competence,
IBM Boulder

• Paul Castiglione

• Shu Chen

• Bill de la Vega

• Gary Devendorf

• Bernadette Kelly

• Thierry Mayeur

• Mary Peterson

• Moshe Rappoport, IBM Zurich

xiv Lotus Domino Release 5.0: A Developer’s Handbook

• Michael Roche

• Mark D Smith

• Barry Wand, IBM Global Services Notes Database team, IBM Austin

• David Watkins, e-business ODC, IBM UK

• Lauren Wendel

• Stanley Wood, IBM Global Services Network Computing Office

• Graphic Services, Lotus North Reading

Comments Welcome
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found at the back of this book to the fax number
shown on the form.

• Use the electronic evaluation form found at
http://www.redbooks.ibm.com

• Send your comments in an Internet note to
redbook@us.ibm.com.

Preface xv

The Domino™ Server family is an integrated messaging and Web
application software platform, for growing companies that need to improve
customer responsiveness, and streamline their business processes.

Domino, the only solution built on an open, unified architecture, is trusted
by the world’s leading companies to deliver secure communication,
collaboration and business applications. Domino R5.0 servers set a new
standard for rich Internet messaging, ease of administration, and integration
with back-end systems.

This chapter describes the Domino R5.0 Server Family, the services Domino
R5.0 offers, and the clients for Domino R5.0.

Domino R5.0 Server
The Domino R5.0 Server is offered in different packages, to allow customers
to pick the functionality that meets their current requirements and extends
that functionality as their requirements change in the future. We will briefly
describe the three Domino R5.0 servers below.

Domino Mail Server
Domino Mail Server is the newest member of the Lotus® Domino server
family. Domino Mail combines support for the latest Internet mail standards
with the advanced messaging capabilities and enterprise-scale reliability and
performance of Lotus Domino. Its integrated, cross-platform services include
Web access, group scheduling, collaborative workspaces, and newsgroups —
all accessible from a Web browser or other standards-based client.

Domino Mail Server is used for messaging only. Customers that want to
deploy their own applications on the Domino server should consider
Domino Application Server or Domino Enterprise Server.

Domino Application Server
Domino Application Server is the leading integrated messaging and
applications server. It delivers best-of-breed messaging as well as an open,

Chapter 1
What is Lotus Domino?

1

secure Web application platform. The server easily integrates back-end
systems with front-end systems business processes.

This is the natural evolution of the Lotus Notes server from which Lotus
Domino originates.

Domino Enterprise Server
Domino Enterprise Server is the server for customers requiring
mission-critical, highly scalable deployments with uninterrupted access,
and maximum performance under all conditions. It extends the functionality
of Domino Mail and Domino Application Servers with high availability
services such as partitioning, clustering, and billing.

This product was previously called Domino Advanced Services.

Services Offered by Domino Servers
Lotus Domino Servers offer a wide range of services. We will briefly
describe the most important ones.

Object Store
Documents in a Domino database can contain any number of objects and
data types, including text, rich text, numerical data, structured data, images,
graphics, sound, video, file attachments, embedded objects, and Java™ and
ActiveX applets. A built-in Full text search engine makes it easy to index and
search documents. The object store also lets your Domino applications
dynamically present information based on variables such as user identity,
user preferences, user input, and time.

Directory
A single directory manages all resource directory information for server and
network configuration, application management, and security. Domino includes
user account synchronization between NT and Domino and is Light Weight
Directory Access Protocol (LDAP) compliant. The directory is the foundation
for easily managing and securing your Internet and intranet applications.

Security
The Domino security model provides user authentication, digital signatures,
flexible access control, and encryption. Domino security enables you to
extend your intranet applications to customers and business partners.

Replication
Bi-directional replication automatically distributes and synchronizes
information and applications across geographically dispersed sites.
Replication makes your business applications available to users around your
company or around the world, regardless of time or location.

2 Lotus Domino Release 5.0: A Developer’s Handbook

Messaging
An advanced client/server messaging system with built-in calendaring and
scheduling enables individuals and groups to send and share information
easily. Message transfer agents (MTAs) seamlessly extend the system to
Simple Mail Transfer Protocol (SMTP)/Multipurpose Internet Mail Extension
(MIME), x.400, and cc:Mail™ messaging environments. The Domino
messaging service provides a single server supporting a variety of mail clients;
Post Office Protocol V3 (POP3), Internet Message Access Protocol V4 (IMAP4),
Message Application Programming Interface (MAPI), and Lotus Notes clients.

Workflow
A workflow engine distributes, routes, and tracks documents according to a
process defined in your applications. Workflow enables you to coordinate
and streamline critical business activities across an organization, and with
customers, partners, and suppliers.

Agents
Agents enable you to automate frequently performed processes, eliminating
tedious administration tasks, and speeding your business applications.
Agents can be triggered by time or events in a business application. Agents
can be run on Domino servers or Lotus Notes clients.

Develo pment Environment
Domino Designer is general-purpose client software featuring an integrated
development environment (IDE) that provides easy access to all features of
the Domino server. We will focus on the features and functions of Domino
Designer as well as the Domino Object Model in this redbook.

Domino Object Model
Domino offers a unified model for accessing its objects through back-end
classes, whether you use LotusScript® or Java. This allows you to switch
programming languages without having to learn new ways to program for
Domino. Refer to Chapter 11: Advanced Domino Programming for more
information on the Domino Object Model.

Live Integration with Enterprise Data
DECS (Domino Enterprise Connection Services) is part of the Domino
Server. It is a Lotus developed technology, first shipped with NotesPump™
2.5, that supplies an easy-to-use forms-based interface to achieve deep,
integrated connectivity to external data from Domino applications. This
allows developers to map fields in forms directly to fields in relational
database tables, without storing any data within the Domino database.

Scalability and Reliability
Domino Enterprise Server enable you to cluster up to six Domino servers to
provide both scalability and failover protection, to maximize the availability

Chapter 1: What is Lotus Domino? 3

of your groupware and messaging applications. Real-time replication
technology keeps the clustered servers synchronized.

Note A Domino server is not the same as a file server. A file server
provides access to shared resources such as printers and applications, and
also manages network activity. Domino is an application-level server process
that provides services necessary for the effective management of
communications and applications.

Clients for Domino R5.0
Previous versions of Lotus Domino had one, all-purpose client that would be
used by users, administrators, and application developers. With Lotus
Domino Release 4.6, a special client for developers called Lotus Notes®
Designer for Domino was introduced.

As a result of the strong focus on ease-of-use in the design of Lotus Domino
R5.0, three individual clients are now available. They are:

• Notes™ R5.0: the users client

• Domino Administrator R5.0: the administrator’s client

• Domino Designer R5.0: the developer’s client

Most of the functionality in Lotus Domino can also be accessed from Web
browsers. The Lotus Domino server includes a Web administration
application. This redbook has its focus on Domino Designer R5.0. Chapter 2
is dedicated to an overview of Domino Designer R5.0. We will give a brief
overview of the two other clients below.

Notes R5.0
Lotus Notes is the leading integrated e-mail and collaborative software for
the Internet. In R5.0, Notes offers a more open, Web-like, customizable
environment, so you can work the way you want, with all the power you
expect from Notes.

The new Navigation Bar gives you instant forward, back, stop, and refresh
actions, as well as access to search engines and the Web, from wherever you
are in Notes.

Notes R5.0 has Bookmarks so that you can create links to Web pages,
application views, documents, and forms for instant access. The new
Window tabs allow you to keep track of multiple open windows, and
navigate between them quickly. Notes R5.0 also has enhanced search
capabilities, including search-by-form, fuzzy search, and the ability to
perform a domain search — making information tracking quick and intuitive.

4 Lotus Domino Release 5.0: A Developer’s Handbook

Headlines
With Notes R5.0, keeping on top of the latest and most important
information is easy. The Notes R5.0 customizable Headlines page lets you
select the information that you want to see first. You’ll be alerted to
important e-mail messages, tasks, or meetings for the day. You can even
receive updates from intranet applications and view Web content
dynamically — all from Headlines.

Each item on the Headlines page is a point of entry, so if you’ve received an
urgent e-mail message, the full document is just a mouse click away. Plus, IT
organizations can customize Headlines to feed corporate intranet
information right onto the user’s desktop.

Enhanced E-mail and Calendaring
The new mail and calendaring features in Notes R5.0 take the best of
industry leading applications, such as cc:Mail and Lotus Organizer, and
make them better. Notes R5.0 continues to build on its powerful integration
by combining your mail and calendar preferences. You can preset
preferences for every e-mail you send, including automatic spell check and
sending all mail high priority with return receipt. Notes R5.0 mail also
supports signature files, giving you a simple way to identify yourself and
add pertinent information to every e-mail you send.

Chapter 1: What is Lotus Domino? 5

If you manage multiple calendars, Notes R5.0 now gives you the ability to
view more than one calendar at a time. Choose to access multiple calendars
for a “quick view” of who is available, or get more detail on another user’s
schedule if necessary. And when you need to take your calendar with you,
Notes R5.0 gives you multiple print formats to choose from. Notes R5.0
streamlines the process of managing resources across domains, giving you
greater access and control over conference rooms, AV equipment, and more.

Installation and Setup
Setting up Notes R5.0 is easy. Integration with dial-up networking entries
means connections are created automatically for you as you install the
software. Notes R5.0 also offers several preset configurations for even faster
user setup. It’s easier than ever for you to access your ISP mail account right
from Notes. And if you’re upgrading, you’ll be ready to go as soon as you
finish installation.

A Powerful Tool for Any Infrastructure
Current Notes users can continue to take advantage of all their Domino
server-based applications like e-mail and calendaring. In addition, Notes
R5.0 offers full standards support including POP, IMAP4, SMTP, LDAP v3,
MIME, S/MIME, HTML, Java, Javascript, and X.509 certificates. So now,
even users with non-Domino, standards-based back ends or that use ISP
hosted mail at home will benefit from the power of Notes R5.0.

Domino Administrator R5.0
Domino Administrator R5.0 is a new, integrated administration control
panel that provides simple, yet flexible administration. Administration
benefits are universal whether you are a smaller company just getting
started with Domino, or an enterprise managing a large-scale deployment,
with thousands of people and applications.

The Domino Administrator R5.0 utilizes the Windows Explorer metaphor,
providing an easy, intuitive interface and allowing drag-and-drop
functionality for common administration tasks, such as moving a user.
Important new server monitoring features now allow administrators to
proactively monitor and manage an environment. Finally, administrators
have the ability to centrally configure, manage, and enforce user desktop
settings. All of these administration enhancements, and more, result in the
most comprehensive server management tools and reduce the cost of
ownership.

6 Lotus Domino Release 5.0: A Developer’s Handbook

Domino Directories Administration Tab
The Domino Administrator provides logical groupings for administration
functions and tasks via five specific interfaces reached via tabs across the top
of the Administrator UI. These tabs are People & Groups, Configuration,
Files, Server, Messaging, and Replication. On each tab, the UI is divided into
three primary work areas or “panes.”

• On the left, the Server Scope Pane gives administrators a complete
hierarchical view of your Domino Server deployment.

• The Context Pane object on the top gives administrators a view of the
specific database, directory, group, server, etc. that you are working on.

• The Results Pane on the bottom gives administrators immediate
feedback and results of tasks you invoke.

• The Toolbar along the right side provides context-specific administration
tools (also available via right-mouse click).

The People & Groups Tab in the Domino Administrator provides a central
interface for all user and group management, such as user registration,
certification, and group management.

From the Files Tab, Administrators can easily manage files and applications.
Context-sensitive tools let administrators easily perform common database
tasks such as check the disk status, move, compact, and more.

Chapter 1: What is Lotus Domino? 7

From the Server Tab, Administrators can get a graphical representation of
the state of their servers, with details on the current status of specific tasks.

Installation
Domino Administrator R5.0 is not a stand-alone client, but is included as
optionally installable with Domino Server R5.0 and Domino Designer R5.0.

As a developer you will need Domino Administrator R5.0 for tasks like
signing databases.

Summary
In this chapter we have described the Domino Server Family:

• Domino Mail Server R5.0

• Domino Application Server R5.0

• Domino Enterprise Server R5.0

and the clients for Domino from Lotus:

• Domino Designer R5.0

• Notes R5.0

• Domino Administrator R5.0

8 Lotus Domino Release 5.0: A Developer’s Handbook

The Domino Web application server and Domino Designer provide a
world-class Web development platform. They are optimized to enable you to
build applications which facilitate the flow of information between your
organization’s enterprise systems and front-end business processes.

The Domino development environment offers you application services such
as workflow, directory, messaging, and security which can be used to create
high value business solutions.

The Domino Designer is an open application development environment that
is intuitive and offers a high degree of developer productivity.

In Domino R5.0 Notes and Web development experiences have been
integrated, bringing native Web technologies to the Notes environment and
extending native Domino technologies to the Web environment. With
Domino Designer you write your application once to run in both a Web
browser and the Notes client. Several Domino design elements, previously
offered only in Notes, are now available as Java applets to provide increased
functionality to browsers. For example, a view served as an applet supports
such “Notes-like” features as expandable/collapsible categories, resizable
columns, and multiple document selection. A rich text editor applet allows
users to style and format text in a Web document. In addition, you can now
write applications in JavaScript which will support both the Notes client and
the Web browser.

Lotus Domino Designer gives you the ability to build international
applications with Domino Global WorkBench™ which contains a
comprehensive set of tools to easily create, synchronize, and manage
multilingual Domino applications.

Chapter 2
Lotus Domino Designer: An Overview

9

Managing Your Workspace
This section gives you a short overview on the user interface of Lotus
Domino Designer. As in Lotus Domino client, the workspace in Lotus
Domino Designer is made up of several pages where the Domino databases
are displayed as icons. One of the features of the Programmer’s Pane is its
sensitivity to context. You are very often just one mouse-click away from the
action you want to perform.

When you start Lotus Notes your screen may look like this:

To access your workspace, click the Databases icon and then click
Workspace.

To open Domino Designer, click the Tools icon in the top right hand corner
of the screen or right click a database icon and select Database - Open in
Designer from the pop-up menu.

You can of course also start Domino Designer by clicking its icon in the Start
Programs list.

10 Lotus Domino Release 5.0: A Developer’s Handbook

The Design Pane
The Design Pane gives you easy access to the design elements of the last 5
databases you have worked on.

Clicking on the tab in the upper left corner of the designer bookmarks (it
looks like a folder with a red star) brings up the Design pane list.

From here you can easily go to any of the design elements of an already
listed database in the area called the work pane by simply clicking it.

Note As soon as you change the design of a Domino database this database
is added to the site database list.

Clicking the push-pin in the upper right corner of the Recent Databases list
fixes the list to the screen and stops it from automatically hiding. Clicking
the push-pin a second time will cause the site database list to disappear
again.

Chapter 2: Lotus Domino Designer: An Overview 11

The Window Tabs
Another enhancement to the user interface is the window tabs, which appear
when a new design element is opened. The window tabs have replaced the
Windows menu as a more intuitive way of tracking where you’ve been.

It’s easy to see what you have previously opened and return to it quickly
and easily by clicking the tab. Also, because the tabs have text titles you can
easily close the windows that you don’t want open without having them as
the active window on the desktop. Just click the small x to the right of the tab
to close that window, without losing it in your history. Refer to the section
below to learn more about History.

Tip Using the window tabs is an easy way to cut and paste design elements
or parts of them between applications.

Tip You can also use the keyboard to switch between the windows.
CTRL - TAB allows you to move from window to window. To go to a specific
window press ALT - W. Domino Designer then displays a number on each
windows tab. Press the number displayed for the tab you want to select.

The Launch Buttons
The Domino Designer R5.0 interface has a set of launch buttons in the upper
right corner.

There are buttons which let you easily preview the results of your design
changes. The following preview tools are available:

� Domino Client — Click the button showing the 3 people.

� Domino Web Browser — Click the button showing the tile.

� External Web Browser — Click the button showing the symbol of the
installed browser.

Note The symbol shown for the external Web browser depends on the
installed browser. For example, if you have two browsers installed you will
see two buttons for the external browsers.

The button displayed to the left of the preview tools buttons (shown in the
panel above) will launch the InfoBox for the selected design element.

12 Lotus Domino Release 5.0: A Developer’s Handbook

The Programmer’s Pane
The Programmer’s Pane is made up of two parts:

� Info list

� Script area

In the info list you can select one of two views:

� Objects view

� Reference view

The Objects View
The Objects view gives you immediate access to any design element in your
application and its associated events and attributes.

You can easily navigate through the list by clicking the plus (+) and minus (-)
signs to expand or collapse the displayed list for a design element.

Chapter 2: Lotus Domino Designer: An Overview 13

The Reference View
The Reference view is similar to the Objects view. In this view you get
information about Domino objects.

The Script Area
Depending on the selection you make in the Objects view, the appropriate
input window is presented in the script area. Using the Design Pane
property box you can adjust the settings to your needs.

14 Lotus Domino Release 5.0: A Developer’s Handbook

Domino Design Elements
As a developer of Domino applications you will work with the Domino
design elements to build your application. The following section gives you
a short overview of the design elements.

The Domino Database
A Domino database is a collection of related information stored in a single
file. A Domino application uses at least one database. However, applications
of a more complex nature may use several databases and may route
information between databases on one or more servers. A database holds
information about its design (see the description of the Domino design
elements below) as well as data. Domino data is organized as documents. A
document is defined as an object containing text, graphics, video, or audio
objects, or any other kind of “rich text” data.

Forms
A form is a framework for entering and viewing information in a database. A
Notes database contains documents created from one or more forms. A form
can contain:

� Fields that store data

� Text that labels fields or gives instructions

� Subforms that store a collection of form elements that you want to use on
more than one form

� Layout regions that combine graphics and fields in a way that affords
greater design flexibility

� Graphics that make forms easier to understand

� Tables that summarize or organize information

� Objects (OLE, Subscriptions, Notes/FX™ fields), file attachments, URLs,
and links that extend the reach of Notes documents

� Actions and buttons that perform functions automatically

� Background color and graphics that enhance the look of a document

Subforms
A subform is a collection of fields that you plan to use in more than one
form. For example, you might create a corporate letterhead in a subform and
then use the subform on a variety of business forms. Subforms can contain
the same elements as a regular form.

Chapter 2: Lotus Domino Designer: An Overview 15

Views
A view is a list of documents in a database. Depending on the selection
criteria a subset or all documents of a database are displayed. The
documents may be grouped or sorted based on their contents. Usually, the
most important information contained in a document is shown in a view, too.

Fields
Fields are the individual elements on a form that store data. Fields determine
what data a single document can contain. Each field in a document stores a
particular kind of data, such as text, numbers, dates, or user names. Often
users can enter and edit field values, but sometimes data is filled in or
changed automatically.

The contents of a field can be displayed in documents and views or can be
retrieved for use in formulas. A field can be defined for use on a single form
or can be defined to be shared among multiple forms in a database.

Shared Fields
Shared fields behave like fields but may be used in different forms. If you
change the properties of a shared field the changes are promoted to all
occurrences of this field.

Tables
Tables help you to present data in a tabular way. You may use different
order, styles, and colors to emphasize the data.

Action Buttons
Action buttons provide one-click shortcuts for routine tasks, and substitutes
for menu choices. For example, they might allow users to compose, print,
delete, or categorize documents, or give Web users, who don’t have access to
the Notes menus, a way to click to edit, save, or close documents.

16 Lotus Domino Release 5.0: A Developer’s Handbook

New Features of Domino Designer
From the beginning, Domino was designed to be a great environment for
quickly creating secure, collaborative applications. Now, the Lotus Domino
Designer has been enhanced to meet the needs of professional and corporate
developers who create enterprise applications for the Web. As a result, the
Lotus Domino Designer includes a set of new features and tools for rapid
application development:

� Outline Designer: The outline designer is a visual toolset for simplifying
Domino Web site design. It enables developers to design an entire site,
link content to the site design, manage the links, and create a UI site
navigation map component that can be used in site frames or on Web
pages.

� Frameset Designer: The frameset designer provides visual tools and
wizards to easily create multi-paned interfaces for Domino applications.

� Page Designer: Page designer, a WYSIWYG HTML authoring tool,
supports a broad range of browser technologies. A number of
improvements to tables and graphics file support provide complete
control over page design and layout.

� Domino UI Applets: Three popular Notes user interface components are
now available as Java applets. The Java applets provide the capability to
quickly add these full-featured Notes design elements to browser
applications.

� New Rapid Development Capabilities in IDE: Domino Designer now
enables multiple work sessions to be open within tiled windows,
provides a “movable” properties box for rapid manipulation of object
properties, and offers a new Design Synopsis that provides access to all
information about your application including application source code
and administrative information.

To start with, we will now look at how these new Design elements can be
used in Domino. The following figures show a database that has been
developed to be used from the Notes client as well as from the Web. The
following design elements have been used:

� Frameset

� Page

� Outline

� Domino User Interface Applet for views

Chapter 2: Lotus Domino Designer: An Overview 17

One of the benefits of the new design elements is that you can build
applications that have the same look and feel both in Notes and on the Web.
Of course, there are some Domino functions which cannot be carried out on
the Web, but using the Domino User Interface Applets help you to minimize
this impact.

This is how the database looks like when it is opened in the Notes client:

18 Lotus Domino Release 5.0: A Developer’s Handbook

The following figure shows the same database opened in a Web browser:

As you can see they look very similar.

The design elements used are:

� Page

The pages are shown in the three left frames of the screen. The middle
left page contains an imbedded outline (the rectangle containing the
selectable views).

� Outline

The outline consists of seven entries. Each entry describes how the
associated view is to be shown or provides a link to a profile document.
In this instance, we have specified that each view should appear in the
right frame of the screen.

� Frameset

A frameset allows you to split the screen in several logical units. In this
example there are four frames, three containing the pages described
above, and a fourth one, containing the views.

� Domino UI applet

The view applet brings some functionality to the browser. Using such an
applet you can expand and collapse views without a server request, and
you are also able to select documents.

The next section gives some more detailed information about each of the
features and tools briefly described above.

Chapter 2: Lotus Domino Designer: An Overview 19

Outline Designer
The outline feature lets you visually design the navigation of your Web site.
In the same way that a table of contents serves to focus the reader’s attention
on the entire document and its organizational flow, the outline allows you to
design the overall navigation of the application first before drilling down to
the page or form level. A Web developer might think of this as site map
creation. In addition to serving as an organizing structure for a site designer,
an outline can be presented as a navigational tool to users, much as a table of
contents guides a reader through a book.

Using the outline feature, you can visually create dynamic Web site maps by
dragging and dropping navigation tiles into a hierarchical structure and
linking them to pages, forms, views, or URL addresses. You can set
properties for the outline such as whether a design element is visible or
invisible to users, and liven up the display with bitmap icons. You can then
embed the resulting Outline control on a Web page or form and further
enhance it with background colors and graphics. The completed site design
is then available as a site map component, called an Outline control, that can
be easily embedded on a Web page, form, or frame.

The Outline control automatically maintains links to the Web page or other
elements no matter how often you rearrange the site. This reduces the
administrative burden of managing large sites that are frequently updated.
The Outline control is programmable, enabling you to add logic to your
outline that dynamically updates the control. For example, an Outline

20 Lotus Domino Release 5.0: A Developer’s Handbook

control can display customized navigation options based on a Web user’s
identity or the location of the user within the site.

Frameset Designer
Framesets provide a standard way to set up a multi-pane interface for the
user. The Frameset designer enables you to create framesets and then
associate specific pages, views, forms, Java applets, ActiveX components, or
any URL with each frame.

Chapter 2: Lotus Domino Designer: An Overview 21

Page Designer
Using the Page designer you can create or import HTML Web pages. Page
designer is a WYSIWYG HTML authoring tool that provides support for a
broad range of browser technologies including HTML 4, image file formats,
Java applets, ActiveX components, and multimedia objects. You can create or
edit HTML in the Page designer using the WYSIWYG editor, by writing
HTML source code, or by mixing both in a single page.

The Page designer provides you with a much improved level of control over
the layout of your Web pages. You no longer have to work directly in HTML
to create sophisticated page design and layout (although working directly in
HTML is still an option).

Domino User Interface Applets
Several Domino design elements are now available as Java applets. Domino
converts all Domino design elements, including embedded elements, to
HTML when accessed by a browser. Optionally, however, you can specify
that Domino sends an interactive version in the form of a corresponding
downloadable Java applet. The applets enable more efficient operations by
allowing work to be performed in the client-side applet.

There are four applets available — View, Text Editor, Action Buttons and
Outline Control. The view is a unique Domino design element that provides
a customizable interface for displaying and interacting with lists of
documents or other objects. The text editor provides a fully functional rich
text editor for creating and editing content. The Outline control offers
customizable site navigation.

22 Lotus Domino Release 5.0: A Developer’s Handbook

New Rapid Development Capabilities in IDE
Also several significant features have been added in Release R5.0 that can be
taken advantage of throughout the environment for improved rapid
application development. For example, you can open multiple work sessions
at the same time either as tabbed work sessions within Designer or as tiled
windows running within multiple instances of Designer. Manipulating
visual objects within Designer is easy using a movable properties box. All
properties associated with a Domino design element are available to you via
point-and-click.

Furthermore, the design synopsis feature has been improved. Design
synopsis provides a single location for you to browse or search all of the
components and code logic within a database. The design synopsis provides
you with an output of critical information about every component of the
application for documentation or archival purposes. This output is
customizable and can be displayed in a single document or in a database to
be used at a later time. This feature is easily accessible from the workspace.

Industry Standards Support
Environments for developing e-Business applications must support the
“standard” Web programming and scripting languages including Java,
JavaScript, and HTML. Lotus Domino Designer provides full support of
Web standards.

Within the Designer Programmer’s Pane you have new choices of languages
for writing and compiling code. Java is available for creating Domino agents,
which are server-side applications that are initiated based upon events or
schedules. Designer supports JavaScript in conjunction with a subset of the
Document Object Model, a standard drafted by the World Wide Web
Consortium (W3C). In addition, you can code in HTML directly in the Page
designer and Forms designer.

Lotus Domino Designer also supports CORBA/IIOP for creating distributed
applications. With Domino CORBA objects, you can write Java applications
and Java applets that remotely access Domino services and data. Through
the support of industry standards in the Domino Web application server and
in Domino Designer, you are able to lower your cost of ownership and
application maintenance by leveraging your existing developer skills.

Chapter 2: Lotus Domino Designer: An Overview 23

Multi-Client Applications Support
One of the great benefits of Lotus Domino Designer is that you are able to
develop a single application that runs in both the Notes client and Web
browsers. The Designer now supports the latest Web standards including
HTML 4, JavaScript, and Java. In addition, some Domino design elements
are available as Java applets. This provides functionality, previously
available only in Notes clients, to Web browsers. Furthermore, the
CORBA/IIOP distributed object technology is supported in Domino
providing an alternative to Notes Remote Procedure Call (RPC) for
communicating between clients and the server.

Notes and Domino localization features allow Notes and Domino to be a
premier platform for multinational organizations working across time zones,
languages, and cultures.

Multilingual Applications Support
The Domino Global WorkBench is now completely integrated as a feature in
Lotus Domino Designer, so you can create multilingual Web sites right out
of the box. The strengths of Domino Global WorkBench reside in better
enabling and serving multilingual multinational corporations and Web site
developers who are implementing and rolling out Domino-based
multilingual applications for use on the World Wide Web or on a Notes
Network. Domino Global WorkBench turns Lotus Domino servers into an
intelligent language server for the Web.

Domino Global WorkBench lets you localize the Web infrastructure, define
the initial sets of languages supported in the Web site, and define the high
level of synchronization between forms and pages across languages. By
allowing you to localize all user-visible elements of an application, including
field labels, buttons, bitmaps, and dialog boxes, as well as actual content, an
application can be optimized for each individual user who can select their
language of choice at run time.

You can create the design of a Web site in more than one language with
Domino Global WorkBench by resourcing/localizing Notes design elements
and objects stored in the Notes object store environment, and the
development languages including HTML, LotusScript, or JavaScript.
Domino Global WorkBench facilitates review and approval of localized
documents through workflow process and ensures accurate linking and
synchronizing of pages available in different languages, enabling content to
appear simultaneously to all users worldwide.

24 Lotus Domino Release 5.0: A Developer’s Handbook

Easy Access to Enterprise Data and Applications
Incorporating back-end data into everyday business processes maximizes
the value of Domino applications. Domino applications provide core
technologies for the security and control of business processes, forms
routing, and approvals management. With new enterprise integration
technologies, Domino applications are now able to incorporate traditionally
difficult to reach data into those applications, becoming a key component of
managed business processes.

Domino includes the ability to create Web applications that contain
connectors to relational databases (for example, Oracle DB/2), Enterprise
Resource Planning systems (for example, SAP), and transaction systems (for
example, CICS, IBM MQSeries, and IMS). You can accomplish this either
programatically (as available in previous versions) or with visual tools to
native database drivers.

Domino Enterprise Connection Services (DECS) offers developers a visual
tool and high performance server environment used to create Web
applications that provide live, native access to enterprise data and
applications. The visual tool presents an application wizard and online
documentation to assist you to define external data source connections —
DB2, Oracle, Sybase, text-based files, EDA/SQL, and ODBC — and fields
within the Domino application that will be automatically updated with
external connector data.

New Domino classes for enterprise data access will be available in
LotusScript and Java. These classes enable you to customize applications to
incorporate information from relational databases, transaction systems, and
ERP applications from Domino according to your business needs. The
Domino driver for JDBC, providing standard JDBC access to data in Domino
databases, is also available. Using this driver, you can write Java applets and
applications that use JDBC to access information in Domino databases.

Domino Connectors are modules which provide native connectivity to external
sources such as relational database, ERP, or transaction systems. These
connectors can be accessed through the forms-based development tool in DECS,
or through the new Domino object classes using LotusScript or Java languages.

Lotus NotesPump, which is available separately, extends DECS functionality
beyond real-time data sources to include support for high volume data
transfer and synchronization. NotesPump provides visual tools to manage
integration between data sources without programming, including the
capability to initiate event-driven or scheduled high volume data transfers
between Domino applications and relational databases and other enterprise
applications. NotesPump also supports programmatic data transfers via
LotusScript and Java Classes.

Chapter 2: Lotus Domino Designer: An Overview 25

This chapter describes how to create and manage Domino databases. The
chapter also includes a glossary of Domino design terms that an application
developer would need to understand when creating a Domino application.

Domino Databases
The term “Domino database” refers to both Domino and Web databases.
What makes it a “Web” database is the viewing mechanism — a Web
browser instead of a Notes client, and the fact that it resides on a Domino
server running the HTTP server task.

Traditional Web sites consist of different kinds of pages and the associated
compound elements which are organized in hierarchical directory structures.
When an HTTP request is issued to display a page, a new HTML coded file
is opened.

With Domino, the Web site is structured through Notes databases designed
in the Notes object store format. When an HTTP request is issued to display
a page, a Notes element is opened through a Universal Resource Locator
(URL) command and Domino translates it for viewing as a Web page.

Creating a Database
There are several different ways of creating a database. You can:

• Use an existing template.

• Use an existing database.

• Create a new database.

Once the database is created, you can modify most of the settings using the
Database InfoBox. We will cover these options later in this chapter in the
section “Changing the Database Properties.”

Using an Existing Template
Domino Release 5.0 provides a series of written applications that can be used
or customized for your own needs. Although there are many types of
popular application templates, they are mainly designed to reveal the

Chapter 3
Domino Design Elements: Basics

27

underlying technology and development capabilities within Domino Release
5.0. Their main intent is not to be “out-of-the-box” applications.

If your application is identical, or similar to, an existing template provided
with Domino, the most convenient way to create a new database is to use
that template as your starting point. Most of the design work has already
been done for you. The design elements of the individual templates can
easily be copied and pasted into your custom applications.

Listing Available Templates
To see the list of available templates:

1. Choose File - Database - New. The list box on the New Database dialog
box lists several templates.

Tip The shortcut is CTRL+N.

2. Click the Show advanced templates check box. The list box at the bottom
of the list displays additional templates. The templates listed are stored
on your local workstation.

3. Select any template.

4. Click the About button to display the database Help document. It
summarizes what the database can be used for.

To see additional templates stored on a server:

1. Click the Template Server button.

2. In the Server field, select the server you want to access. Additional
templates are listed.

Creating the Database
Follow these steps to create the database:

1. Decide if the database will reside on your local workstation or on a
server.

2. In the Title field, specify a meaningful title.

3. In the File Name field, specify a file name for the database. You can also
take the file name that Domino provides automatically based on the
database title.

Note The extension for a database file is .NSF. The extension for a
database template file is .NTF.

28 Lotus Domino Release 5.0: A Developer’s Handbook

The following figure gives you an example of a completed New
Database dialog box:

4. You can encrypt local databases to protect confidential data. This is
useful if users have laptops that will be taken out of their business
locations.

To specify encryption, click Encryption. Specify the appropriate level of
encryption. The following figure shows what you can do:

Only the user shown in the Encryption window has access to the local
database after it is encrypted.

Note Although Domino users can’t access the encrypted database
locally, they can still access the database if it is on a server. This also
applies to Web users. If you would like to deny access to other users, use
the Access Control List.

Chapter 3: Domino Design Elements: Basics 29

5. If you want to keep the database within a predefined size, click Size
Limit, found in the New Database dialog box, and select the appropriate
size. The maximum size of a database with Release 5.0 is 16GB.

Note The default size is one gigabyte.

Domino will warn you or the administrator (if the database is on the
server) when the size of the database gets close to the specified limit.
Make sure that the database size you specify is correct, you will not be
able to change this value later on.

The Size Limit box looks like this:

6. If you want your new database design to stay synchronized with the
design template, check Inherit Future Design Changes in the New
Database dialog box.

For advanced options, click Advanced. The following dialog box will be
displayed.

See the Domino R5.0 Help database for a description of these advanced
database options.

30 Lotus Domino Release 5.0: A Developer’s Handbook

Copying an Existing Database
Copying a database is similar to starting from a template, except that you
will almost certainly want to change part of the design.

Listing Available Databases
To list the available databases:

1. Choose File - Database - Open.

Tip The shortcut is CTRL+O.

2. If required, specify the appropriate server name in the Server field to list
additional databases.

3. Click About to browse the Help document of the database.

4. Click Bookmark to add the database to your bookmarks.

Creating the Database
To create the database:

1. In your Database folder, select the database icon that you want to copy.

2. Display the database pop-up menu by clicking the right mouse button.

3. Choose Database - Properties.

4. Click the Design tab. Make sure that the InfoBox shows that the design is
not hidden. It should look like this:

5. Close the InfoBox.

6. Keep the database selected.

7. Choose File - Database - New Copy.

Chapter 3: Domino Design Elements: Basics 31

8. Select Local as the server name if you want to store the database on your
local workstation. Select a server name if you want to store the database
on a server.

9. Enter a title for the database.

10. Type a file name with the extension .NSF for the new database.

11. Select Database Design Only since you do not want to copy the
documents that are stored in the database.

12. Deselect Access Control List because it could prevent you from
modifying the database design in the future.

Note Unless you deselect Access Control List, the access that you have
to the copy of the database will be the same as the access you have to the
original database.

The following figure shows an example of the Copy Database dialog
box:

13. You can optionally select the following two features:

• Encryption. This is a good idea if database will be stored locally,
especially if the database contains confidential data, or if your users
have laptops that they use in public environments.

To encrypt the database, click Encryption and select the appropriate
encryption level.

• Predefine the maximum database size. Click Size Limit and specify
the appropriate size.

14. Click OK to start the copy operation.

32 Lotus Domino Release 5.0: A Developer’s Handbook

Creating a New Database
If the template or existing databases do not meet your requirements, you can
create a completely new database. This means that you will have to create all
the design elements, such as forms, pages, views, and fields. However, you
can always copy existing elements from other databases and paste them into
the new database.

1. Choose File - Database - New.

2. Type a title in the Title field.

3. From the list of available databases displayed at the bottom of the
window, choose the -Blank- option.

4. Click OK. The new database will be added to your bookmarks.

5. Select the database that you just created, click the right mouse button,
and select Open in Designer.

6. Domino opens the Lotus Domino Designer R5.0 workstation and you are
ready to start the design of the database.

Changing the Database Properties
One of the strengths of Domino is the fact that it is sensitive to context. You
are often just one mouse-click away from the properties of the object you are
working on: outlines, fields, embedded elements, Java applets, buttons,
forms, attachments, and databases.

Opening the Database InfoBox
To display the database InfoBox:

1. Display the database pop-up menu by clicking the right mouse button.

2. Select Database Properties.

Tip You can also click the following InfoBox icon to display the
database properties InfoBox. If the SmartIcons bar is not visible, select
File - Preferences - SmartIcons from the menu and click Icon Bar under
Show.

Chapter 3: Domino Design Elements: Basics 33

Specifying the Database Type, Replication, and Encryption
The Basics tab contains information about the database, such as its title,
location, database name, the database type, the replication settings, and
replication history. The Basics tab looks like this:

1. To set the Database type, you can select one of the following values:

• Standard. The option used most of the time.

• Library. A database with type Library is generally created from the
Database library template. It is used to record and store information
about the databases located on a Domino server or on a workstation.
This provides an easy way for users to browse the list of databases
available to them

• Personal Journal. This database type allows you to store personal
information. It has limited design elements and is meant for
individual use.

• Address Book. Creates a database based on the Domino Directory
format.

• Light Address Book. Creates a database based on the Domino
Directory format, but with fewer features than the full Address Book.

• Multi DB Search. Used to specify a database type of Search Through
Multiple Databases, which uses the SRCHSITE.NTF template. This
type of database is used to configure searches among databases that
have been designated to participate in Multi Database indexing by
selecting the appropriate option in the Design tab of the database
InfoBox.

34 Lotus Domino Release 5.0: A Developer’s Handbook

• Portfolio. This type allows the user to keep a collection of databases
that are used frequently or related.

• IMAP Server Proxy. Internet Message Access Protocol (IMAP) is used
to send and receive electronic mail using the Internet.

• News Server Proxy. Allows the user to keep a collection of news
group and conversations about news.

• Subscriptions. This type is used to keep track of user subscriptions to
various databases and is used by the headlines databases.

2. Click Encryption to display a window that enables you to specify
encryption for the local version of the database.

3. Selecting Web Access. Use JavaScript when generating pages. This
option allows the Domino server to use JavaScript to generate Web
pages. By selecting this option you can use, for example, multiple
buttons on the form.

4. Selecting Web Access. Require SSL connection. This option forces users
to login to the database using Secure Sockets Layer.

Displaying General Database Information
1. Click the Information tab to display general information about the

database, such as its size, and the number of documents stored.

The Information tab of the InfoBox looks like this:

Chapter 3: Domino Design Elements: Basics 35

2. Click Archive to display the Archive InfoBox. It looks like this:

This option enables you to determine when documents are deleted and
where archives of those documents are stored.

3. Click User Activity to display information related to user activity.

Specifying Print Options
1. Click the Printer tab to specify options related to printing the database.

2. Use the icons under the Header and Footer options to define the date
and time, tabs, and page numbering.

3. You can also select the font, size, and style.

Note Printing properties don’t take effect if you are printing from the
Web.

36 Lotus Domino Release 5.0: A Developer’s Handbook

Specifying Database Design Properties
1. Click the Design tab to display or specify information concerning the

design of the database.

The example displayed in the figure below shows that the design of this
database is not hidden. If you select Inherit design from template, the
database automatically inherits all the changes made to the template if
the template this database is based on is modified in the future.

2. If the database you are creating is a template, check the Database is a
template check box.

3. Specify a name for the template.

4. If appropriate, select that the new template is listed as an advanced
template. This indicates that the template should only be customized by
Domino developers.

5. Deselect List in Database Catalog and Show in ‘Open Database’ dialog if
the database is located on a server, contains sensitive data, and you do
not want users to be able to see its name.

6. Select Include in multi database indexing if you want the index to be
included in Multi Database Search Database site queries

7. Enable Multilingual database if your database will be used by
multinational organizations across time zones, languages, and cultures.

8. Select the Default language for this database.

The following figure gives an example of the Design tab:

Chapter 3: Domino Design Elements: Basics 37

Specifying Launch Options
1. Click the Launch tab to define what users will see when they first open

the database. The dialog box looks different depending on your choice of
actions in the On Database Open drop-down list.

2. Select an option from the On Database Open drop-down list.

A wide variety of options is possible, for example:

• If you select open designated Frameset, then you need to select the
frameset that you want to be opened. All available framesets are
listed in the drop-down box.

• If you select Open designated Navigator options, another drop-down
list is displayed, where you can select the kind of navigator that you
want to open. You can choose folders, standard navigator or page.
Choosing standard navigator or page will display a third drop-down
list where you can select the actual navigators or pages to be used.

38 Lotus Domino Release 5.0: A Developer’s Handbook

• Select Open Designated Navigator in its Own Window if you want
the navigator to be displayed in a full screen. You would typically
choose this option if the navigator or page consists of a large map or a
workflow sketch.

3. You can specify the properties of the Preview Pane by clicking Preview
Pane Default. You will be presented with a number of choices. Click the
most appropriate property for the user.

Note This option does not take effect on the Web, because Web users
don’t have the Preview Pane.

4. Select an option from the On Web Open drop-down list for Web users
opening the database. A wide variety of options are possible.

Chapter 3: Domino Design Elements: Basics 39

Specifying Full Text Indexing
1. Click the Full Text tab to create, update, or delete a full-text index, which

allows for a fast retrieval of documents.

2. Select the update frequency as required.

Specifying Advanced Options
1. Click the Advanced tab if you would like to enable or disable fields in

the database, or set the size limit for fields in the database.

40 Lotus Domino Release 5.0: A Developer’s Handbook

Using Design Synopses
Design Synopses gives you a single location where you can browse or search
all of the components and code logic of a database. It provides you with an
output of important information about every component of the application,
for documentation or archival purposes. You may customize the output to
your needs, and you can display it as a single document, or put it into a
database to be used at a later time.

The Design Synopsis dialog box allows you to generate a detailed report on a
particular database. In Release 5.0, the user interface of the dialog box has
been enhanced to make it easier to use.

To create a design synopsis:

1. Select the database for which you want a report.

2. Choose File - Database - Design Synopsis.

3. Select the design elements (forms, views, shared fields, agents, and so
on) which you want in your report. For each design element you select,
select the individual elements that you want in your report. The Add
button lets you select the elements of a design and add them one at a
time to your report. The Add All button selects all the elements of a
particular design element.

Chapter 3: Domino Design Elements: Basics 41

4. Click the Database Information tab to select the database information
that you want in the report.

The following selections can be made:

• General Information. Gives information such as the database title,
location, and categories.

• Space Usage. Calculates the file size, number of documents, space
used by the database, and so on.

• Replication. Gives information on the replication settings for the
database.

• Access List. Generates a list of users, groups, and servers in the ACL
and specifies assigned access levels and access roles for each.

42 Lotus Domino Release 5.0: A Developer’s Handbook

5. Click the Content tab to select the contents of the report for each design
element.

6. Click the Output tab to specify the output options. For example, if you
want to write the report to a database, select Write Output to Database.

Chapter 3: Domino Design Elements: Basics 43

7. Click OK to generate the report.

If you have selected Write Output to Database, a new dialog box is
displayed where you can specify the database to receive the information.

Summary
This chapter explained some of the basics related to creating Domino
databases and also provided a glossary for some of the most commonly used
design elements in Domino. It also explained Design Synopses, which
enables you to easily see an overview of the design elements in your
database.

44 Lotus Domino Release 5.0: A Developer’s Handbook

This chapter describes Domino forms; what they are as well as how to design
and modify them. We also discuss the basic design elements used when
creating a Domino database. In addition, this chapter explains how to show
different information to Web users and Notes users.

When you have completed this chapter, you will also understand how to
capture CGI variables into a form.

Forms
This section will guide you through Domino forms; what they are, the
different types of forms, and how to create, design, and modify them. This
section also discusses the design elements of the form, such as fields, tables,
images, embedded elements, layout regions, and computed text. We will use
the TeamRoom database template as a basis for demonstrating the Domino
R5.0 elements.

The form is the skeleton provided to users to enable them to enter data,
either by typing or by using buttons. There is usually at least one form in a
database, although a typical business application will have many forms, each
targeted to the type of information that the user wants to save in the
database.

The form contains all the design elements; fields to store the user’s
information, static text, buttons, sections, images, and subforms that help the
user to enter the data into the database.

To create a new form, go to Form Designer and click New Form or choose
Create - Design - Form. Alternatively, you can copy and paste a form from
the Design Form pane and then customize the form to your needs.

Specifying Form Properties
The Form InfoBox contains all of the information related to forms.

To look at the form properties, do the following:

1. Go to the Form Designer.

2. To create a form, click New Form and the new form is displayed.

Chapter 4
Forms

45

3. Click the Properties icon.

4. In the InfoBox, click the triangle in the middle of the InfoBox title and
select Form. An InfoBox will be displayed which allows you to set the
properties of the form. It consists of seven tabs:

• Basics

• Defaults

• Launch

• Background

• Header

• Print

• Security

Using the Basics Tab
The Basics tab stores general information about the form.

1. In the Name field, specify a name and an alias for the form.

By default, the form name appears as an item in the Create option on the
menu bar. This is the name that the user sees. Therefore, make it as
meaningful as possible.

It is recommended that you create an alias for each name. This is the
name you will use in your code. Specifying an alias enables you to leave
your code unmodified if, for example, the user requests to have the
name of the form changed.

2. Try to keep the first character unique, because Domino will use the first
unique character as a keyboard shortcut under Windows.

Note You also can add the underline character (_) to define a keyboard
shortcut.

Example: _Document

46 Lotus Domino Release 5.0: A Developer’s Handbook

The D is now the keyboard shortcut character.

3. In the Comment field, you can enter some information about the form.
This is useful for designers, and will help another designer who may
need to modify the database design at a later stage.

4. Specify the form type. The form that we are creating in the example
shown above is a Document type, which means that it is a main
document. Response type means that it is linked to a main document of
type Document. The response document cannot exist without a parent.
A third type is the Response to Response type, which adds a third level
to the document hierarchy.

5. If you want to include the form in the Create option on the menu bar,
you have two options:

• If there are only a small number of forms, they can be displayed
directly in the Create Menu list. Up to nine forms can be listed in the
Create option.

• If there are many different forms, it is best to use the Create - Other
dialog. You could add the most commonly used forms to the Create
Menu list and then put the least used forms under the Create - Other
dialog option.

Note Create options are not applicable to Web users, because Web
users do not have the Create menu.

6. Select the Search Builder check box to add the response form to the list
of forms that users can search.

Chapter 4: Forms 47

7. In the Versioning field, specify whether or not you want version control.
The following options are available:

• None

• New versions become responses

• Prior versions become responses

• New versions become siblings

8. You can decide to keep track of the different versions of the document
that have been created. The current version can be set as a response to
the previous version of the document, or vice versa.

9. Select the Anonymous Form check box if you want authors or editors to
anonymously enter documents into the database based on this form.

Note Documents created with an anonymous form do not contain the
$UpdatedBy field, but have an $Anonymous field with a value of “1”.
You will also need to make sure that the author’s or editor’s name does
not appear in any other field of the form.

10. If desired, select the Merge replication conflicts option. Domino then
merges conflicting edits into a single document whenever possible. If
two users edit different fields in the same document, Domino saves the
changes to each field in a single document.

However, if two users edit the same field in the same document, Domino
saves one document (which is saved first) as a main document and the
other as a response.

Using the Defaults Tab
The Defaults tab lets you specify details regarding the usage of the form.

48 Lotus Domino Release 5.0: A Developer’s Handbook

1. Domino uses a default form to open documents whenever their
associated form has been dropped from the database design. You should
select this option for the main form of the database.

2. Leave the Store Form in Document check box deselected.

You must store the form in the document if, for example, a user that has
no access to the database receives a document and has no access to the
design of the form used to create the document.

Note Selecting the Store Form in Document option increases the
amount of disk storage required to store each document based on that
form.

3. The On Open: Automatically Enable Edit Mode option, when selected,
opens the document in edit mode from either a Notes client or a Web
browser.

4. For Web Access: Generate HTML for All Fields allows the developer to
use hidden fields for programming.

The following features are not applicable or available on the Web, or are
only partially supported from a Web browser:

• The Disable Field Exchange check box, which is normally left deselected
to enable data exchange with Notes/FX compliant applications, is not
supported on the Web.

• The option to Automatically Refresh Fields is not supported on the Web.

• The Formulas Inherit Values from Selected Document option means that
Domino copies the values of the fields in the parent document to the
document or response document that is being created. The inherit does
not work automatically, unless you specify the field name of the parent
document in the field’s default value event. Domino supports this
feature for rich text fields as well as other field types.

• The Inherit Entire Selected Document into Rich Text Field option defines
how the fields of the parent document are displayed in the response
document. This is not supported on the Web.

• The Show Context Pane check box has no effect on the Web.

• The Present Mail Send dialog check box is not supported on the Web.

• For Web Access: Treat Document Contents as HTML. This option has no
effect on the Web.

• Generate HTML for all fields: When a form is being browsed via a Web
browser, this option will generate HTML for each field even if the field is
hidden.

Chapter 4: Forms 49

Using the Launch Tab
The Launch tab enables you to specify what happens when the document is
opened.

Note The Auto Launch feature is not available for Web users.

1. In the Auto Launch field, specify the type of action to take place when
the document is opened. The following options are available:

• None

• First Attachment

• First Document Link

• First OLE Object

• URL

2. If users are also going to use this form from the Web, make sure that
-None- is selected in the Auto Launch field, because launch features are
not supported on the Web.

3. The frameset drop-down list allows you to select a frameset which will
open when the user opens the form.

4. When you have selected the current frameset, you have to select the
current frame where you would like to open the form.

The frameset option works in the same way in a Notes client as in a Web
browser.

50 Lotus Domino Release 5.0: A Developer’s Handbook

Using the Background Tab
1. Click the Background tab to specify the options for the form

background.

2. Specify the background color for the form using the Color drop-down
box.

3. If desired, click the Paste Graphic button to paste a graphic image into
the form. If the image is smaller than the form, Domino tiles the image to
fit the size of the form.

Note You need to copy an image to the clipboard before you click the
button.

Note Domino supports RGB colors, but if you want to insert very high
quality graphics, select the option to import an image instead.

Tip Keep in mind that the cursor could be difficult to see on some
displays if you choose a color like gray.

4. You can also import a graphic image into the form by clicking the Import
Graphic button. Select the graphic image and click Import. The
supported graphic formats are BMP, GIF, JPEG, PCX and TIFF 5.0.

Note If the image does not fill the entire page, it will be tiled
automatically.

Tip It is better to import rather than paste a graphic into the
background because imported graphics are usually of better quality than
pasted graphics. It is also easier to import a graphic than to copy the
graphic to the clipboard and then paste it in.

5. By selecting Allow Users to Override Form Background Properties, users
can change the background properties of a document that uses this form.

Chapter 4: Forms 51

Using the Header and Footer Tab
Header is a new feature in Domino R5.0 and works only in a Notes client. On
the Web, Domino produces a table with the header information rather than a
separate frame.

Headers can contain any element that a form can contain. The only caveat is
that a table cannot be the first element in a header, it must be preceded by a
text object, even if the text object is blank.

Using the Print Tab
1. Click the Print tab to specify the options that relate to printing a

document based on the form.

2. Use the icons listed under the Header and Footer option buttons to
define the date and time, tabs, and page numbering.

3. You can also select the font, size, and style.

Note The printing properties set here do not take effect if you are printing
from the Web.

52 Lotus Domino Release 5.0: A Developer’s Handbook

Using the Security Tab
Use the Security tab to define which users or user groups are authorized to
use the form.

1. Deselect the All Readers and Above check box. This activates the blue
person button to the right of the list.

2. Click the button. A window is displayed that allows you to select the
users and groups from the different address books to which you have
access.

3. Specify who can create documents with this form. The default is All
Authors and Above. If required, deselect the check box, and click the
blue person button to the right of the list. A window is displayed that
allows you to select individual users and groups.

4. If required, select Disable Printing/Forwarding/Copying to Clipboard.
This makes it more difficult for users to distribute the documents created
with this form to other users. It is recommended that you limit this
option to confidential data.

Note Selecting this option does not prevent the user from using other
software to copy data to the clipboard.

5. Select Available to Public Access Users, if required. This allows users
with No access or Depositor access to see specific documents and forms
without giving these users Reader access to the entire database.

Chapter 4: Forms 53

Giving the Form a Title
You can define actions to be performed when users trigger events as they
compose, edit, or browse a document created with a form. The events can be
defined in the Programmer’s Pane which is displayed at the bottom of the
screen. The Programmer’s Pane is divided into two parts:

1. Objects view, which displays a hierarchical tree of Domino objects plus
any you have added, with the associated events.

2. A second panel where you can enter different kinds of actions that
define what events will do.

One event that you can define is the window title. When you design a form,
make sure you give it a title. The title will then appear on the Notes title bar
when a document is created or edited, based on the form in Notes and on the
browser title bar when a document is created or edited in browser.

Note You should pay special attention to creating a window title when the
application is to be used through the Web, because some of the functions
used in the Notes client don’t work on the Web.

Here is an example of a window title that can be used from either a Notes
client or a Web browser:

@If(@IsNewDoc;"New Document";"Document: " + Subject + " created
by " + @Name([CN];@UserName))

Subject is a field of the form. @UserName is a function that returns the whole
name of the user. @Name([CN]:@UserName) returns the common name part
of the user name.

If the document is a new document (@IsNewDoc), the title is set to New
Document. If the document already exists in the database, the title is set to
Document: Subject created by Username.

Objects View
Objects view is one of the two parts of the Programmer’s Pane. This pane
displays a hierarchical tree of Domino’s default objects, and the objects that
you have created. Domino R5.0 provides a consistent programming
environment across all of the Designer tools and supported languages. This
new layout also helps you to see all of your code and available objects easily

54 Lotus Domino Release 5.0: A Developer’s Handbook

The same pane is also displayed in the Reference View. It contains
information about all Domino objects, formulas, and commands and it looks
like this:

Form events are listed in the objects view and the following table lists all
Domino form events:

Continued

YesNoContains all information, for
example JavaScript, color and
fonts, that occurs in the HTML
Head section.

FormulaHTML Head
Attributes

YesRuns when document is reset
by button. Trigger the
form.reset.action.

JavaScriptonReset

YesRuns when document is
submitted.

JavaScriptonSubmit

YesRuns when a document is
exited.

JavaScriptonUnload

YesRuns when document is being
loaded.

JavaScriptonLoad

YesYesYou can put JavaScript
functions in here.

JavaScriptJS Header

YesYesGives the title for the form.FormulaWindow Title

WebNotesDescriptionLanguageEvents

Chapter 4: Forms 55

Continued

NoYesRuns after the user changes the
document to read or edit mode.

LotusScriptPostmodechange

NoYesRuns before a document is
changed to read or edit mode.

LotusScriptQuerymodechange

NoYesRuns after a document is
opened.

LotusScriptPostopen

NoYesRuns before a document is
opened.

LotusScriptQueryopen

NoYesApplies to all scriptable objects
and provides an area where all
global variables are declared.

LotusScript(Declarations)

NoYesApplies to all scriptable objects
and provides an area for state-
ments (Use, Option, Const, Def).

LotusScript(Options)

YesYes Allows you to display your
own help for a form when the
user presses the F1 key.

FormulaonHelpRequest

YesNoMust use the syntax:
@Command([ToolsRunMacro];
“agentname”).
You can also enter different
types of formulas here without
calling an agent.
Tip You can enter a LotusScript
agent and then call that agent.

FormulaWebQuerySave

YesNoRuns after a form is submitted
from the Web. By default it
runs an agent before a Web
document displays. The formula
must use the following syntax:
@Command([ToolsRunMacro];
“agentname”).
You can also enter different
types of formulas here without
calling an agent.
Tip You can enter a LotusScript
agent and then call that agent.

FormulaWebQueryOpen

YesNoContains all information that
occurs in the HTML Body
section.

FormulaHTML Body
Attributes

WebNotesDescriptionLanguageEvents

56 Lotus Domino Release 5.0: A Developer’s Handbook

NoYesRuns after the document is
closed.

LotusScriptTerminate

NoYesRuns when a document is
being loaded.

LotusScriptInitialize

NoYesRuns before a document is
closed.

LotusScriptQueryclose

NoYesRuns after the document has
been saved

LotusScriptPostSave

NoYesRuns after a document is
refreshed (and values are
recalculated).

LotusScriptPostrecalc

WebNotesDescriptionLanguageEvents

Creating a Field
We will now take a look at how to create a field in a form. We will also see
how to change the properties of the field.

We will add a combobox field in the form. This field will demonstrate how
to use keyword fields on the Web. The combobox field will allow you to
choose one keyword. You will then change the color of the documents
background on the Web.

1. From the standard navigator, choose Design, then Forms, and open the
Main Document form listed in the view pane.

2. Type the static text, Background Color.

3. Under the static text, create the field Color. To do so, choose Create - Field.

Tip You can also display a pop-up menu by clicking the right mouse
button and selecting Create Field.

4. On the InfoBox for Field, type a name for the field, for example, Color.
The new name is now also shown in the Objects view.

5. In the Type field, choose Combobox.

6. In the field next to Type, leave Editable.

7. In the Choices field, leave Enter choices (one per line).

8. In the Choices list box, type Yellow, Green and Blue. Separate the values
by pressing ENTER.

9. Enter 1 in the Tab field. This positions the cursor in this field when the
document is opened.

Note Remember to change the Frameset field in the forms InfoBox
launch tab to -Blank-.

Chapter 4: Forms 57

10. In the Programmer’s Pane, leave the Default Value empty. The form and
fields InfoBox should look like this:

11. Save the modified form by pressing the ESC key, and confirm that you
want to save the form.

12. Close the information box that is displayed.

Performing a Test Run
To test your modification from a Notes client:

1. Open a Notes Client and select the TeamRoom™ database.

2. Double-click the TeamRoom database in your workspace. Once the
database is open, choose Create - Document - Document.

58 Lotus Domino Release 5.0: A Developer’s Handbook

3. In the document, you will see that there is now an additional field. The
document will look like this:

4. Select a color for the background and type a document title in the Subject
box.

5. Click the Save & Close button on the Action bar.

To see the document, select Active - By Category and the document will
appear in the list of documents.

To test your modifications from a Web browser interface, you can use
the Preview in Web browser option in Notes, which will enable you to
preview your form without creating a document. To do this, choose
Design - Preview in Web browser. If your database is on a Domino
Server, Notes will then use the browser specified in your location
document to preview the form. If your database is on a local machine,
Notes will start the Local Web Preview Process.

Note You can only preview local databases which are in the Notes data
directory.

Alternatively you can do the following:

6. Start your Web browser.

Chapter 4: Forms 59

7. Enter the following command in the location field:
http://"Server name"/Teamroom.nsf/Document?OpenForm

where Server name is the current server where the database is located,
Teamroom.nsf is the database name and Document?OpenForm opens the
new document so that you can edit it.

8. You should see the new field in your browser.

9. Type in the Document title and choose the color for the background.

10. After you have completed the form, click Submit.

Earlier we created a Color field to enable the user to change the
background color of the form. We will now make some further updates
to the form to add new functions:

11. From the Lotus Domino Designer R5.0, choose the Forms Design view.

12. Double-click the document form in the View pane to open it.

13. Click the Color field.

14. Select the onChange event from the Objects view.

15. Type the following JavaScript code:
document.bgColor=this.form.Color.options[this.form.Color.se
lectedIndex].text

OnChange event is a method which occurs when the value in the field is
changed. The object document represents the current Web page, and it
has a property bgcolor which is the background color of the page.
this.form.Color.selectedIndex

This returns an integer specifying the option selected in the field. Now
that we know which of the options is selected, we can use it to return a
text string with
this.form.Color.options[this.form.Color.selectedIndex].text

Note While this should work on the onChange JavaScript event, in the
beta build we used to write this book we needed to put the code in the
onBlur event.

60 Lotus Domino Release 5.0: A Developer’s Handbook

16. After you have entered the code, the design should look like this:

Caution Unlike HTML and LotusScript, JavaScript is case sensitive.

17. Preview the form in your browser.

18. When you select the value in the Color field, the background color of the
page should change.

Sharing and Reusing a Field
You can only reuse fields in the database where the field has been defined as
a shared field.

1. From Lotus Domino Designer R5.0, choose the Forms Design view. The
list of forms is displayed in the view pane.

2. Double-click the document form. The form is displayed.

3. Go to the Color field and select Design - Share this field.

4. Domino will automatically move that field to the Resources - Shared
Field - View pane, where all database shared fields are stored.

5. In order to reuse the shared fields, choose the form where you want to
add the field; for example, Event - Form. Choose Create - Insert Shared
Field and a window will be displayed.

6. Select the Color and click OK. The field is now added into the form.

Chapter 4: Forms 61

7. Press the ESC key and save the form. Now the design should look like
this:

In this section we have only shown you how to create and run keyword
fields, but all other fields work in a similar way. The following table lists the
other field types and their explanations/declarations:

Continued

Domino supports four-digit year
format and, with R5.0, Domino can
also display a 4 character year field.
Using calendar controls, enable “Use
Native Control.” Insert date and time
in separate fields.

Domino allows you to select
different kinds of date and time
formats. Time is date type.
Field controls such as list
boxes, and calendar controls
are available on forms.

Time

You can resize the field by using the
field properties InfoBox and selecting
the Use native control in Basic tab
and changing the width and height in
Options tab. Web doesn’t support this
option. The Designer can hide
delimiters around the field by
choosing the Hide Field Delimiter
property.

Normal text field, where user
can enter text or numbers (if it
is an editable field). Text can be
string or variant type.

Text

Note DeclarationsField Type

62 Lotus Domino Release 5.0: A Developer’s Handbook

Used for the Subscription
feature. Provides a way to
programmatically hold a
formula that can be referred to
by some other process.

Formula

Matches Web functionality.Users can add text. Each
character is displayed with an
asterisk (*).

Password

The Choices option does not work on
the Web.

Security field which lets
designers control form access.
People, groups and servers
who have been added in the
field can open and read
documents. Readers can be
string or variant type.

Readers

The Choices option does not work on
the Web.

To help users enter names
correctly in a document.
Provides links to existing lists
of names.

Names

The Choices option does not work on
the Web.

Security field which allows
designers to control form
access. People, groups and
servers who have been added
in the field can open and edit
documents. Author can be
string or variant type.

Authors

Field value can be stored in MIME
format.

Domino allows a user to add
text, attachments, Java applets,
tables in this field. Rich text can
be string or variant type.

Rich Text

These replace the keyword list fields
in previous versions of Notes. By
default the keyword list field type
from R4 is automatically converted to
the Dialoglist field type.

These can be string or variant
type.

Combobox,
Listbox,
Dialoglist

The Designer can change the decimal
symbols by changing On display
preferences to Custom. The Currency
option lets you select the right
country currency, or you can
customize it.

Number field can count
imported values. Number can
be integer, float or double type.

Number

Note DeclarationsField Type

Chapter 4: Forms 63

Field Properties
Now that you have created a field, we are going to look at some of the
properties of fields contained in the document form.

Let’s first take a look at the Categories Field. We will look at the keyword
field and explain the differences between this field type and other field
types.

1. From the Lotus Domino Designer R5.0, choose Forms Design view.

2. Double-click the Main Document form in the view pane to open it.

3. Double-click the Categories field. The Field InfoBox is displayed and it
looks like this:

The Basics Tab
On the Basics tab, Domino displays the field format. This field is of type
Editable Dialog list field. There are several different ways of displaying the
list of keywords from which users can make their selections. In our example,
a View variable is given the “MissionLookup” view name (which is later
used in @DBColumn) and an @DbColumn formula checks all the documents
in the current database for categories and retrieves them for display in a
keyword list.

The Basics tab also shows how the data is actually put into the field. The
following types of field are available:

• Editable: The user enters the data, or the data is created when the user
selects a button performing a formula or script written by the developer.

64 Lotus Domino Release 5.0: A Developer’s Handbook

• Computed: The field is computed each time the document is created,
edited and saved.

• Computed for display: The field is computed each time the document is
opened in browse or edit mode. The contents of the field are only visible
while the document is open. It is not saved into the database and is not
visible in a view.

For example, this type of field is used to display the current time and
date or work variables, such as the server name where the database is
stored.

• Computed when composed: The field is only computed when the
document is created. This type of field is especially useful for storing the
name of the author of the document, the creation date or a document
reference number.

There is also a check box to allow multiple values to be selected at once.

Tab Order properties allow you to select the “time” when the user comes in
to this field while editing the document and moving ahead from field to field
using the Tab key.

Note Tab Order default value is 0 (zero).

Control Options Tab
The second InfoBox tab is Control options. It looks like this:

Chapter 4: Forms 65

Combobox
Note Width and
height does not work
on the Web. It formats
to the width of the
longest string.

Listbox
Note Width and
height does not work
on the Web. It formats
to the width of the
longest string.

Radio Button

Check box

Dialog list

Web Browser (IE 4.0)Notes ClientKeyword

Note Choosing frame type has no effect on the Web.

There are a number of check boxes:

1. Show field delimiters. This shows the field delimiters of the field.

2. Allow values not in list. By choosing this option you give the user a
chance to enter a value which is not on the list.

Note This feature is not available for Web users.

3. Display entry helper. This displays the small grey down arrow in the
bottom right hand corner of the field to tell the user that there are
multiple options to select from.

66 Lotus Domino Release 5.0: A Developer’s Handbook

4. Refresh fields on keyword change. This will force the document to
refresh its fields if the value in the field is changed.

Note This should be used sparingly as it can cause the user to become
frustrated if the form contains a large number of fields.

5. Refresh choices on document refresh. This option is used to refresh the
values in the field (usually based on a formula) if the document is
refreshed.

Advanced Tab
The third tab is Advanced and it looks like this:

This tab enables you to specify:

• Field help: information is shown at the bottom of the Notes client screen.

Note Field help is not available for Web users. If you require field help
in a browser application, you could use the JavaScript onFocus event to
update either the message area of the browser window or a separate
field.

• Give field default focus: Here you can specify whether the entry field
will have the initial focus when the form is opened. You must specify
this option if you want to place the cursor in an entry field that is not the
first one on the form. You can also use this option if you want to paste
data in a particular entry field before placing the cursor in its final
position.

• Multi-value separators.

• Security options: for example, Enable Encryption for this field.

Note Security options are not available for Web users.

Chapter 4: Forms 67

Fonts Tab
The fourth tab of the InfoBox lets you specify fonts and colors for the field
data. The tab looks like this:

HTML Attributes Tab
The fifth tab is the HTML attributes tab which enables you to name your
field so that it can be accessed by JavaScript. By default its name is the same
as the field name. The HTML attributes page looks like this:

68 Lotus Domino Release 5.0: A Developer’s Handbook

Alignment Tab
The sixth tab is the Alignment tab, which lets you specify the alignment of
the paragraph containing the field. For example, you should use this option
if you define a field to be used as the title. If you choose to align it in the
center of the form, it will stay in the center irrespective of the screen
resolution used. The Alignment tab looks like this:

Hide When Tab
The Hide When tab looks like this:

Chapter 4: Forms 69

Example: You can use a formula to restrict a field so that only one group of
people can see it:

• Create a Friend group in the server’s Public Address Book.

• Select the Hide Paragraph if Formula is True option and add the
following formula in the formula window:

!@Contains("Friends"; @UserNamesList)

The @Contains() formula checks if the Friends group exists in the list
returned by @UserNamesList.

Note The exclamation point character (!) is the logical not operator.

The @UserNamesList formula returns a text list of all the users who are
authorized to see that database. If the user has been added to the group
named Friends, they can see the field and database.

Several check boxes are available to hide the paragraph on predefined
conditions. You can also specify other conditions using an @function.

Tip Whenever possible use the predefined conditions for better
performance.

Note The InfoBox of each design element found in a form provides a tab
that allows you to specify hide-when conditions.

Rich Text Field (RTF) Applet
This is a good option when you want to give Web users opportunities to
write different styles of text. One example where this field is very useful is in
a feedback form. After the user has submitted feedback, Domino saves the
document in the database. Using the RTF applet, Domino also saves the text
format and style, which means that the text is stored in exactly the same
format and style as when the user entered it. Let’s see how this option
works.

1. Open a Document form.

2. Go to the Body field and open the field’s InfoBox. You can see that the
field is RichText type and the Use Applet In The Browser option is
enabled.

70 Lotus Domino Release 5.0: A Developer’s Handbook

3. When you run the form in Notes it looks like an ordinary RichText field,
but when you run the form in a Web browser it should look like this:

4. After the user has submitted the document, if you look at the document
using a Notes client, it should look like this:

As you can see, the field contents are stored exactly as the user entered
them.

Using the $$Return Field
The $$Return field is used among other things, for creating messages that
will be displayed after the user has submitted a document on the Web.
Without the $$Return field Domino responds with the default response
“Form processed.” To customize this response message, you can include
HTML code as part of the formula for the $$Return field.

You can also use a $$Return field to run a custom CGI (Common Gateway
Interface) program immediately after the user submits the form and Domino
has created the document. For example, you can run a CGI program that

Chapter 4: Forms 71

uses the Notes API to further process the input data. The Web client displays
the output of the CGI program to the user.

To run a CGI program, include the URL to the CGI program file and enclose
it in brackets. Note that you can pass arguments, for example, values from
fields in the form, to the CGI program.

Returning to Another Page
You can display another Web page to the user once a form has been
processed instead of leaving a blank, gray screen. The following example
displays the Lotus home page, but you can direct the user to the main view
of the database instead, for example.

"[http://www.lotus.com]"

Adding a Link to Another Web Page
In the response message, you can include links to other Web pages. In this
instance an HTML page will be created with a link to the Lotus home page.
The user will see a blank screen with a link to the specified Web page once
the form has been processed.

"Lotus"

Adding links is useful if, for example, you want to provide the user with a
choice of Web pages to visit once a form has been processed.

Personalized Messages
You can create a personalized message for the user who submits a form. For
example, the following $$Return formula returns the response “Thank you
for your document,” and appends the user’s name. <h2> </h2> is an HTML
tag and means that text between those tags is a second level header. <hr>
creates a horizontal rule.

"<h2>Thank you for your document, "+@Name([CN];@UserName) +"!
</h2><hr>"

Note For the @Name function to work, you need to authenticate with the
Domino server when first opening the database. If you did, you would be
classified as an Anonymous user of the application.

$$Return Example from TeamRoom Template
The TeamRoom template has a rather complex $$Return field, but going
through the code gives you some good examples of how you could use this
field. The $$Return field is a shared field and you can open the field by
going to the Resources - Shared Fields Designer and double-clicking the field
in the View pane.

72 Lotus Domino Release 5.0: A Developer’s Handbook

You can use the REM command to add a comment for the $$Return field.
For example:

REM "This $$Return field returns HTML as a result of the
successful form submittal.";

REM;

First, simple strings are assigned to variables to make it easier to write and to
read formulas:

REM "Variables to translate";

PrevDoc := "Open the page you just submitted";

Another := "Create Another: ";

TRreturn := "Return to the TeamRoom";

Done := "Done";

Subteam := "Subteam Profile";

Participant := "Participant Profile";

Event := "Event Profile";

MainTopic := "TeamRoom topic";

Mission := "Mission Page";

Response := "Response";

IntProfile := "Interest Profile";

ArcProfile := "Archive Profile";

TeamStatus := "Team Status";

SubteamStatus := "Subteam Status";

Next, the formula takes the current user name and adds the “Thank You, “
text into the ThankPerson variable:

ThankPerson := "Thank you, " + @Name([CN]; @UserName);

ThankYou := ThankPerson + ". The following page has been
successfully submitted: ";

REM "End variables to translate";

REM "Get the name of this database.";

Chapter 4: Forms 73

The following formula gets the name of the current database, and replaces
any spaces with the plus (+) character and replaces any backslash characters
with the forward slash character (/). @DbName is a function which returns
the name of the current Domino server and the name and the path of the
database. @Subset with the -1 parameter returns just the database name and
path:

DB := @ReplaceSubstring(@ReplaceSubstring(@Subset(@DbName; -1);
" "; "+"); "\\"; "/");

Next, you get the value from the webButtonPressed field:

FIELD webButtonPressed := webButtonPressed;

As the $$Return field is a shared field in this database, the formula first
determines which form was used:

FormName := @If(Form = "MainTopic"; MainTopic;

Form = "Subteam"; Subteam;

Form = "ParticipantProfile"; Participant;

Form = "Event"; Event;

Form = "Response"; Response;

Form = "ResponseToResponse"; response;

Form = "Interest Profile"; IntProfile;

@Contains(form; "Archive"); ArcProfile;

Form = "Mission"; Mission;

Form = "Status"; TeamStatus;

Form = "SubteamStatus"; SubteamStatus; "");

Next, we format the message to return to the user.

Thanks := "<h3>" + ThankYou + Formname + "</h3><hr>";

Next, you create a link so that the user can return to this document.
@Text(@DocumentUniqueID) returns the unique ID of this document:

existingdoclink := "<a href=/" + db +
"/($All)/" + @Text(@DocumentUniqueID) + "?OpenDocument>" +
PrevDoc + " ";

The String variable contains a link which returns the user to the
WelcomePage:

LinkTRReturn := "" +
TRReturn + "";

74 Lotus Domino Release 5.0: A Developer’s Handbook

Next, we create a button which closes the current window:

LinkDoneButton := "<FORM><INPUT TYPE=\"button\" VALUE=" + Done
+ " onClick=\"window.close(self)\"></FORM>";

The next three string variables contain links to the different forms:

LinkCRParticipant := " <a href=/" +
DB + "/" + "ParticipantProfile?Openform>" + Participant +
" ";

LinkCRSubteam := " <a href=/" + DB +
"/" + "Subteam?Openform>" + Subteam + " ";

LinkCREvent := " <a href=/" + DB + "/"
+ "Event?Openform>" + Event + " ";

The bkgd variable contains a background color (#ffffff = white):

bkgd := "<body bgcolor=\"" + "#ffffff" + "\"+ >";

We then concatenate the variables into two text strings:

REM "Assemble the HTML to be returned";

OkMsg := bkgd + Thanks + existingdoclink + LinkTRReturn;

CancelMsg := mkgd + Thanks + LinkDoneButton + Another +
LinkCRParticipant + LinkCRSubteam + LinkCREvent;

Finally, an @If formula checks which of the two strings should be returned as
a response to the user:

REM "Because the Part Profile, Subteam, and Event are created
in a smaller window, we\'re using a different msg. when
they\'re new docs.";

@If(webNewDoc = "1"; CancelMsg;OKMsg)

Note You can also use the onSubmit event in the form to control the forms
submit process. To use the onSubmit event you will need to use JavaScript.

Tip Good JavaScript commands to use when the form has been submitted
are history.go() and history.back(). For example, when you have submitted a
form and you want the user to return to the view where they came from, and
you don’t want to use $$Return.field, you can type the following line into the
onSubmit event:
History.go(-1) or history.back()

This JavaScript command allows the browser to step back one page in the
history.

Chapter 4: Forms 75

Field Events
Field events are functions where you can store formulas, LotusScript, Java or
JavaScript commands.

The following table lists all the Fields events:

NoYesWhen field is being closed.LotusScriptTerminate

NoYesWhen field is being loaded.
(user clicks the button, for
example).

LotusScriptInitialize

NoYesAfter cursor exits the field.LotusScriptExiting

NoYesWhen cursor enters a field.LotusScriptEntering

NoYesApplies to all scriptable objects
and provides an area where all
global variables are declared.

LotusScript(Declarations)

NoYesApplies to all scriptable objects
and provides an area for
statements (Use, option, Const,
Def).

LotusScript(Options)

YesNoOccurs when user gives input
focus to the field.

JavaScriptonFocus

YesNoWhen user exits the field.JavaScriptonBlur

YesNoWhen the field value changes.JavaScriptonChange

YesNoWhen field is clicked.JavaScriptonClick

YesNoAllows you to add extra
HTML attributes to the field
tag that Domino generates.

FormulaHTML Attributes

YesYesRequires a choice from a list,
which is done using an @If
formula.

FormulaInput validation

YesYesCan be used to modify the data
entered by the user, to trim
blanks, and to change users’
names into uppercase or
propercase.

FormulaInput translations

YesYesWhen the document is loaded
the contents of the Default
Value event are displayed.

FormulaDefault value

WebNotesDescriptionLanguageEvents

76 Lotus Domino Release 5.0: A Developer’s Handbook

Sharing Design Elements With Subforms
Subforms provide a way to share fields between groups of design elements.

All design elements that are added to forms can also be used in subforms.
These include:

• Static text and pictures

• Fields, whatever their type and format

• Hotspots as buttons or links

• Tables

• Action Bar

• Java applets

• Embedded elements

• Another subform

When you modify an existing subform, the changes are immediately
reflected in all the forms that use the modified subform.

Note You can insert subforms into a table or even another subform.

A subform is provided with the TeamRoom template. You can work with its
design in one of the following ways:

1. From Lotus Domino Designer R5.0, select the Subforms design view. The
list of subforms is displayed in the view pane. Double-click the
SharedResponseHeader subform. This subform is used to share hidden
fields which are common to both Response and Response To Response
forms. The Subform Builder window is displayed.

2. Alternatively, you can open the subform directly from the form. To do
this, open the form that contains the subform (Response or Response To
Response). Once the form is open, double-click the subform part of the
form. The Subform Builder window is displayed.

Tip You might have to scroll through the form to see the subform part.

Chapter 4: Forms 77

The following figure shows you that the Subform Builder window is
identical to the Form Builder window:

It contains:

• The form in the design pane.

• The actions linked to the subform in the action pane. When a form and a
subform are displayed, the action bars of both the form and the subform
are shown.

• The field definition in the Programmer’s Pane. In subforms, as in forms,
@functions, LotusScript and JavaScript can be used.

Note The subform does not contain the Default title, onSubmit, onReset,
HTML Head Attributes, HTML Body Attributes, WebQueryOpen,
WebQuerySave, OnHelpRequest events, because the subform is always
linked to a form and the form already contains those events.

Subform Properties
To display the subform properties:

1. On the Subform pane, click your right mouse button.

78 Lotus Domino Release 5.0: A Developer’s Handbook

2. Select Subform Properties and the InfoBox is shown. It looks like this:

3. If required, select the Hide Subform from R3 Users check box.

Note You must hide the subform from Release 3 users if the subform
contains features that are not available in Notes Release 3, such as layout
regions or Java applets.

4. Close the InfoBox.

5. Close the subform.

Removing Subforms
You can remove subforms from the design of a form, or from the design of a
database.

Removing Subforms From the Form Design
If the subform is no longer needed in a particular form:

1. Open the design of the form.

2. Click the subform area.

3. Choose Edit - Clear on the menu bar.

Removing Subforms From the Database Design
As for all design elements, you can remove subforms from the design of the
database. For example, if all the fields contained in the subform are no
longer needed in any of the database forms.

However, if the database contains documents using the deleted subform,
you have to make sure that the users can still access the documents by
having an empty subform that uses the same name as the deleted subform.

Chapter 4: Forms 79

Computed Subforms
You can use computed subforms to show different elements to different
users. Which subform is loaded is based on a formula, so you can load
different subforms for different groups. You can also use different subforms
for Web users than for Notes users. To do this:

1. First, you have to create some subforms, at least two.

2. When your subforms are ready, open the Main Topic form.

3. Create a computed subform by choosing Create - Insert Subform. A
dialog box is displayed:

4. Select Insert Subform Based on Formula and click OK.

5. A computed subform is created on the form and it looks like this:

80 Lotus Domino Release 5.0: A Developer’s Handbook

You have to specify a formula in the Programmer’s Pane. The formula
returns a text string which is the name of the subform to be loaded.

Looking at a Computed Subform
1. You should still be in the document form.

2. Click the Computed Subform once.

3. Add the following formula in the Computed(subform) - Default Value -
Events Programming pane:
@If(@ClientType="Notes";"NotesSub";"WebSub")

@ClientType is a formula which determines whether the user is using a
Notes client or a Web client. The result of the formula above is a text
string, NotesSub or WebSub. If the user is using a Web client, the
WebSub subform is loaded. If the user is using a Notes client, the formula
returns the string NotesSub and the NotesSub subform is loaded.

Note If the formula returns an empty string, no subform is loaded.

Using a computed subform is a good way to show some elements only to
one type of client, or to users who have different roles. For example, one user
can read information, or provide content, to the Web site while another user
may have the authority to approve information for the Web.

Displaying a Different Form to Web Users and Notes Users
Maybe the easiest way to show different things to different users is to use
different forms. This is most useful when the information you want to show
to Web users and Notes users differs considerably, or where Web browsers
do not support the features used in your forms. To use different forms for
Web users and Notes client users, do the following:

1. First of all you need to have two forms: one for Web users and one for
Notes users.

Chapter 4: Forms 81

2. Make sure that both forms have the same alias name. The form InfoBox
looks like this:

3. The names of the forms can also be the same, but it’s much more useful
to give them different meaningful names. In this way, you can easily
determine if the form is for use by Web users or by Notes users. For
example, you could name them as Main Topic (Notes) and Main Topic
(Web).

4. After creating the two forms you need to make them available only for
Web users or Notes users. From the standard navigator, choose Design,
then Forms. The list of forms is displayed. Click the form and click the
Properties icon. The InfoBox is displayed. Go to the Design tab. It looks
like this:

82 Lotus Domino Release 5.0: A Developer’s Handbook

5. On the Hide Design Element From section, select Web browser if the
form is only to be used in Notes, and select Notes R4.6 or later clients if
the form is only to be used on the Web.

Note All Notes elements can be hidden from a Notes client or a Web client.

When the user opens a document, whether in Notes or on the Web, the
correct form will then be used to display the document.

Working With Layout Regions
A layout region is generally used when creating dialog-like forms and in
@Dialogboxes. It consists of a 32-bit graphic that contains several kinds of
design elements, such as fields (except for rich text, password and formula),
static text and buttons. However, Java applets, objects, attachments and
embedded objects are not allowed.

Creating a Layout Region
To create a layout region, do the following:

1. From Lotus Domino Designer R5.0, choose the Forms design view.

2. Open up a form listed in the View pane, for example, the Author profile
form.

3. Position the cursor in an empty area of the form.

4. Choose Create - Layout Region - New Layout Region from the menu bar.
An empty frame is built in the form.

5. If you want to add a picture, choose Create - Picture. The box is
displayed where you can browse and import that picture.

Note Domino supports .BMP, .GIF, .JPEG, .CGM, Lotus Pic, Tiff 5.0 and
.PCX graphic files.

6. To add static text, choose Create - Layout Region - Text or use Create
Static Text - SmartIcons (Create text box). A frame is created within the
graphic. You can move the static text frame around. If you double-click
the static text frame, you display the Control box.

7. To create fields, choose Create - Fields as in any other form.

Layout Regions InfoBox
To open the layout region that was used to create the Review Options form,
follow these steps:

1. From the standard navigator of the Document Library database, choose
Design, then Forms. The available forms are listed in the View pane.

Chapter 4: Forms 83

2. In the View pane, double-click ReviewOptions to open up the form. It
contains the layout region you were looking at earlier.

3. Click the bitmap.

4. Click the Properties icon. The following InfoBox is shown:

The InfoBox has two tabs:

• On the Basics tab, you can adjust the dimensions of the layout region.
You can also display a grid to position the fields and static text within
that region.

• On the Hide tab, you can elect to hide the design element. Several
options are available. You can also define an @formula to hide the
design element.

5. Close the InfoBox.

Working With Collapsible Sections
If the form design includes a long set of fields or fields that contain large
amounts of data, it can be annoying for users to have to scroll up and down
to find the information they are looking for. Collapsible sections can be a
good solution to this problem.

Creating a Collapsible Section
To create a collapsible section within a form, follow these steps:

1. Open the design of a form.

2. Choose Create - Section - Standard if you want the section to be seen by
all the users that have access to the document.

3. Alternatively, choose Create - Section - Controlled Access if you want to
restrict access of the section to certain users defined in a formula.

84 Lotus Domino Release 5.0: A Developer’s Handbook

The InfoBox for a standard section looks like this:

4. The Title tab allows you to give a name to the section. You can also use
formulas to name sections. Other properties that can be changed here are
the border type and color.

5. The Expand/Collapse tab enables you to define expand and collapse
rules when the document is previewed, opened for reading, opened for
editing, or printed.

6. The Font tab enables you to set the text type and color.

7. The Hide When tab lets you specify when that section is displayed.

8. The HTML tab allows you to specify HTML options. For example, you
can name your section using Title options in HTML.

Using Tables
There are many new features related to tables in R5.0, with a focus on
increasing the variety of types of tables that can be used in Domino
applications designed for use both by Notes clients and by Web browsers.

Tables are especially useful for applications on the Web. By using tables, you
can be sure that fields are aligned correctly and that the images are
positioned correctly.

With R5.0 you can include fields, graphics, buttons, subforms, hotspots,
objects, sections, nested tables, attachments, Java Applets, and embedded
elements inside a Domino table.

To create a table, follow these steps:

1. In your form, click where you want to create the table.

Chapter 4: Forms 85

2. Choose Create - Table.

The Create Table dialog box is displayed:

3. Select the type of table you would like to create.

4. Specify the number of rows in the Rows field.

5. Specify the number of columns in the Columns field.

The table is then created on the form and it will look like the one shown
below:

86 Lotus Domino Release 5.0: A Developer’s Handbook

Create Tables Within Tables
Lotus Domino R5.0 also supports nested tables (up to four levels deep). This
is useful for developing tabbed tables both for Notes client users and for
Web sites when you want to be sure that fields and graphics are aligned
correctly.

To create a nested table, follow these steps:

1. Select the table and position the cursor within the cell where you want to
create a nested table.

2. Choose Create - Table.

3. Specify the number of rows in the Rows field.

4. Specify the number of columns in the Columns field.

The nested table is then created inside the table, and it will look like the one
shown below:

If you want to use this nested table on the Web, you must highlight the
whole table and choose Text - Pass Thru HTML. This causes Domino to
translate the whole table into HTML, so that the nested table will be
displayed correctly on the Web.

Note When you are using tables on the Web you must insert information in
all the cells (even if it is only a dot), otherwise the empty cells will not be
displayed.

Chapter 4: Forms 87

Merge and Split Cells
Table cells can also be merged into one cell. Domino translates this into the
proper rowspan and colspan attributes.

The following example demonstrates how to create a table of four cells and
then merge two of them into one:

1. Create a blank form by choosing Create - Design - Form from the Lotus
Domino Designer R5.0 client.

2. Create a table with two rows and two columns.

3. Highlight the two leftmost cells.

4. Choose Table - Merge Cells.

You can see that these two cells are now merged into one cell as shown below:

Let’s preview the same form on the Web.

5. To split cells, click on the merged cell and choose Table - Split Cells.

88 Lotus Domino Release 5.0: A Developer’s Handbook

Table Properties
There are seven available tab options where you can modify and concatenate
tables:

Table Layout Tab
This is the first tab and it looks like this:

1. The Width option allows you to specify how the table appears to the
user. There are three different ways to show the table:

• Fit to window: The table size changes when the user changes the
window size. Fit to window shows all the table cells at the same time
so users don’t have to use the horizontal scroll bar.

• Fixed: The designer can manually determine the size of the table. The
table width does not change if the user changes the window size.

• Same as window: The table uses the same width definitions as the
current window.

Note All of these options are supported on the Web.

Note Only those cells that contain extra space will be resized. If the
picture or field size is exactly the size of the cell, that cell cannot be
resized.

2. If Fixed is selected, then you can select the table’s alignment. Options are
left, center, and right of the window.

3. The R4 Spacing option converts the whole table into the R4 form.

4. Cell width: allows you to set the width of the cell.

5. The Space Between Columns and Space Between Rows options allow
you to specify the distance between the cells or rows.

Chapter 4: Forms 89

Cell Borders Tab
The second tab looks like this:

• Cell Border Style allows you to select the style of the cell borders.
Available options are Standard, Ridge, and Groove.

• Color allows you to select the color of the border lines for the whole
table.

• The thickness of the borders can be set from 0 to 10. You can set all the
borders of selected cells to 0 or 1 by clicking one of the buttons at the
bottom of the screen. If you have selected more than one cell, you can
outline them by clicking the button at the bottom right of the section.

Note For the Web, there are only two options for borders, on or off. This is
determined by the borders of the top left cell.

Table/Cell Background Tab
The Table/Cell Background tab looks like this:

90 Lotus Domino Release 5.0: A Developer’s Handbook

1. In the Colors tab, you can choose the background color of the cell. To
have the same background color for the whole table, click Apply to
Entire Table.

2. The Table Style option allows you to select different types of styles for
the table. The available options are:

• Standard

• Alternating rows

• Alternating columns

• Left and top

• Left

• Right and top

• Right

• Top

Here is an example for table style — Left and Top:

Chapter 4: Forms 91

3. The Style options give you the opportunity to use a particular color
effect in the cells, as shown below:

To do this, you must first select the first column of cells in your table.

• Then choose black for the background color of the cells and hue gray
for the gradient color.

• Select the text color white.

• For the Direction option choose Left to Right.

• Then select the second column of cells and choose gray as the
background color.

• Finally, hide the borders.

Note This feature is not supported on the Web.

92 Lotus Domino Release 5.0: A Developer’s Handbook

Table Borders Tab
The Table Border tab lets you specify the width and style of the table border.
The Table Border tab looks like this:

The Drop Shadow option shows a shadow around the table.

Note The Drop Shadow option is not supported on the Web.

Margins Tab
The Margins tab enables you to specify the left and right margins for the
table. You can use either the percent sign (%) or inches. The Margins tab
looks like this:

Note The Margins option is not supported on the Web.

Chapter 4: Forms 93

Table Rows Tab
The Table Rows tab is a new feature in Domino R5.0 that lets you work more
effectively with tables.

Select the Show only one row at a time option. You can use many different
kinds of features.
Note Some collapsible features do not work on the Web.
The following figure shows a small table that we will use to demonstrate
how the collapsible features work:

94 Lotus Domino Release 5.0: A Developer’s Handbook

• There is one large table, which contains five rows and two columns.

• In the second cell of each of the first four rows there is a nested table. The
first and second nested tables each contain two rows and two columns.
The third nested table contains three rows and two columns, and the final
nested table in the fourth row contains one row and two columns.

The following table shows some further examples of these features:

Note All these table rows in the main table appear to the user so that they
only see one row at a time.

Continued

This is again similar to the Once when opened option but
cycles through each row in the table continuously.

Switch rows every
(n)milliseconds —
Continually

This is similar to the Once when opened option but is
activated when the user clicks the first row.

Switch rows every
(n)milliseconds —
Cycle once on Click

Domino runs (displays the rows one after another) the table
once when the form is loaded. Interval option is allowed.

Switch rows every
(n)milliseconds —
Once when opened

When the user clicks the table, Domino displays the second
row of the tables.

Auto Start Timer

This option allows you to display a single row from the main
table that the user can cycle through to the next by clicking
with the mouse.

Switch rows every
(n)milliseconds —
Advance on Click

Users pick rows via
tabs

DescriptionOption

Chapter 4: Forms 95

Allows you to display a single row based on the value stored
in special field $table-name where table-name is the value that
you give your table in the Table-HTML tab, for example
$MyTable. The value required in this field is the name of the
tab or the row number (field must be a number type and rows
start from zero), you need to have displayed.

Switch rows
programatically

DescriptionOption

HTML Tab
The HTML tab gives you an opportunity to specify options for your table.
Available options are ID, Class, Style, and Title. Apart from the ID field,
which is used in controlling the table programmatically, HTML options only
take effect on the Web.

Embedded Elements
Using Domino R5.0 you can insert navigators, views, outlines, calendar
controls, scheduling controls, folder panes, and file upload controls just by
clicking the mouse button in your form. These elements are called embedded
elements and they provide an easy way to enter and show information in
both the Notes client and Web browsers.

The Notes client cannot use two of these elements, only Web users can.
These elements are:

• Embedded Folder Pane

• Embedded File Upload Control

Web users cannot use Date Picker.

Note You can also use these embedded elements in any page and they will
work as they do in a form.

96 Lotus Domino Release 5.0: A Developer’s Handbook

Embedded Navigators
An embedded navigator is an element which provides you with an easy way
to show a Notes navigator. You can have multiple navigators in one form. To
insert an embedded navigator into your form, follow these steps:

1. From Lotus Domino Designer R5.0, open the TeamRoom database.

2. Choose Forms design view and create a new form by pressing the New -
Form button in the Form view pane.

3. Create a table containing one row and two cells.

4. Go to the first cell in the table and choose Create - Embedded Element -
Navigator and choose TeamRoom navigator in the dialog box.

5. The TeamRoom navigator is now inserted into the table, and you can see
in the Programmer’s Pane that the TeamRoom navigator is highlighted.

6. Try to change the embedded navigator by choosing another navigator in
the Programmer’s Pane to see what happens. As you will see, the
navigator changes in your design pane when you select another
navigator.

7. You can also embed a navigator based on a formula.

Embedded Date Picker
An embedded Date Picker is an element which shows the calendar view of
the current month (default) and allows the user to browse other months.

Embedded Outline Control
You can insert an Embedded Outline Control in your form to give more
flexibility to your programming of the navigation pane than navigators
provide. Navigators appear essentially as static image maps. If you need
more flexible and programmable navigation, Outline control can be a good
option. For more information on this, read Chapter 6: New R5.0 Design
Elements.

Embedded View
An embedded view, also known as a UI Java view applet, is an element
which provides you with an easy way to show a Domino view for Notes or
Web users. The power of an embedded view is that when you load the site
containing an embedded view through a Web browser, it actually behaves as
if you were using a Notes client. For example, the Expand and Collapse
options work fine, and it is not necessary for browsers to reload the site
repeatedly, which can be slow. You can insert only one view in one form,
subform or page.

Chapter 4: Forms 97

To create a new embedded view, follow these steps:

1. Go to the second cell in the table and choose Create - Embedded Element
- View.

2. A dialog box is displayed. Choose By Category and then OK.

3. The embedded view is inserted into the table and you can see a list of
views in the Programmer’s Pane.

4. By clicking with the right mouse button and selecting Embedded View,
you can display the Embedded Views InfoBox, which will look like this:

• The Basic tab allows you to specify whether you want to use the view
Java applet when looking at this form through a browser, and if not,
lets you override the default number of lines to display as configured
in the Domino server configuration.

• You can choose the color of the background and the size of the view
in the Elements tab.

• The Fonts tab of the InfoBox lets you specify fonts and colors for the
Embedded View.

• The Alignment tab lets you specify the alignment of the view.

• The Page Break tab allows you to control the pagination of the view.

• The Hide When tab allows you to set when to display and hide the
view.

98 Lotus Domino Release 5.0: A Developer’s Handbook

Embedded Group Scheduling Control
The group scheduling control is similar to the one found in the R5.0 mail
template, and allows you to view the diaries/schedules of multiple people at
the same time.

Embedded Folder Pane
An embedded folder pane is an element which provides you with an easy
way to display a list of Notes views on the Web. You can have only one
embedded folder pane within one form.

1. Open the form that you created earlier and delete the embedded
navigator element.

2. To do this, click the embedded navigator element and press DELETE.

3. In the same place, choose Create - Embedded Element - Folder Pane.
After embedding the folder pane element form, the layout will look like
this:

You can look at the form in your Web browser by opening the database
from the Web and typing the following address in the location field:
http://"server name"/"database name"/"Form Name"?openForm

Chapter 4: Forms 99

where the “server name” is the name of your server, “database name” is
the database name, and “Form Name” is the name of the form that you
want to open.

You can also change the font, font size, color of the text, and alignment
of the folder pane by opening the InfoBox.

4. Close the form and return to the standard navigator.

Embedded File Upload Control
A file upload control is an element which provides users with an easy way to
upload file attachments to the Web. You can have multiple file upload
control elements in one form.

Note Web browsers which support File Upload Control are Netscape
Navigator 3.x or later and Microsoft Internet Explorer 3.02 or later. To be
able to upload files with Microsoft Internet Explorer, you must also install
the Microsoft Internet Explorer File Upload Control add-on.

100 Lotus Domino Release 5.0: A Developer’s Handbook

Other Features of Forms

Horizontal Rules
It is not necessary to write HTML to insert and define horizontal rules. To
create a horizontal rule, do the following:

1. From the standard navigator choose Design - Forms. A list of forms is
displayed.

2. Open the Main Topic form.

3. Click the form where you want to create a horizontal rule.

4. Choose Create - Horizontal Rule.

5. A horizontal rule is created on the form. You can change the settings of
the horizontal rule from the Infobox.

6. By default, the rule is set to fit to window. You can set the height and
color, and either fit the width to the window or specify a width.

Note Experiment with your browser to see if your browser supports color
and width attributes for rules.

Computed Text
Computed text can be used to create text, on the form or in a rich text type
field on a document, based on Notes @formulas. Creating computed text is
similar to creating text fields which are computed for display.

Computed text is not stored in the document and it is computed every time
the document is opened, reloaded or refreshed. Computed text is especially
useful when used in documents.

Authors who don’t have designer privileges, can create personalized Web
pages using computed text. To create computed text in an existing field, do
the following:

1. From the Notes, client open the TeamRoom database and create a new
document choosing Create - Document - Document.

2. Go to the Content field.

3. Choose Create - Computed Text.

Chapter 4: Forms 101

4. Computed Text is created on the field.

5. When Computed Text is highlighted, click the Programmer’s Pane and
type the desired formula. In this case the formula is:
@Name([CN];@UserName)

The formula returns the common name part of the username.

Note This is useful if you are not a designer but you want to add some
functionality to the document. You can, for example, use computed text to
show something to one user that other users will not see.

The following formula allows only Paul Revere to see the text; other users
will not see it:

@If(@Name([CN]; @UserName) = "Paul Revere"; "Hello Paul, This
text is shown only for you, other users don't see it";"");

Tip If desired, you can type HTML into Computed Text.

102 Lotus Domino Release 5.0: A Developer’s Handbook

Buttons, Action Bar Buttons, and Hotspots
Web browsers don’t have a prebuilt Graphical User Interface (GUI) for
Domino applications, so you must provide Web users with a way to perform
common actions, such as creating new documents, saving a document, and
changing to another view.

Multiple buttons can be created on Notes forms to be displayed on the Web.
Button formulas are run when the user clicks the button. With buttons or
view actions that display in the Action bar, Web users can perform
equivalent functions to those that Notes users are able to perform by using
menus and the Action bar.

To create multiple buttons that are displayed in a Web browser, perform the
following steps:

1. The browser must support JavaScript.

2. Select the database property Web Access: Use JavaScript When
Generating Pages. Without this property set, Domino recognizes only
the first button in a document and treats it, by default, as a Submit
button that closes and saves the document. If there are no buttons in the
form, Domino places a Submit button at the bottom of the form.

Guidelines for Using Button Formulas
Notice the following guidelines and restrictions:

• On the Web Action bar, buttons and hotspots support only a subset of
the available actions.

• You should create only one Submit button per form. You can customize
this button, even if you haven’t selected the database property Web
Access: Use JavaScript when generating pages.

• Formulas on buttons are run when the user clicks the button, while
formulas on hotspots and action buttons are run when the hotspot or
action button is displayed.

Tip If your browser doesn’t support JavaScript and you don’t want any
buttons on the form enter the following HTML code on the bottom of the
form: </form>. Remember to mark text as Pass-Thru HTML and hide it from
Notes users.

Chapter 4: Forms 103

New Action Features
Domino R5.0 has brought new features to actions, such as drop-down action
buttons.

• Action Drop-Down Menu: The application developer can now create a
drop-down menu on an action bar by creating an action and giving it a
name containing a backslash (\) in it.

The following example creates seven action buttons for the following
names:

• Help\1.Edit Document

• Help\2.Save & Close(saved docs)

• Help\3.Save & Close(web.newdoc)

• Help\4.Delete

• Help\5.Cancel (Notes)

• Help\6.Cancel (Web-new docs)

• Help\7.Cancel (Web-saved docs)

When all the action buttons are created, save the document and preview
the form by choosing Design - Preview in Notes. The action bar and the
action button should look like this:

As you can see, the drop-down menu opens when you click the Help
button.

Note You can add only one sublevel to the action.

Note This feature is not supported on the Web.

104 Lotus Domino Release 5.0: A Developer’s Handbook

• Action Bar InfoBox: The Action bar InfoBox allows you to modify the
properties of the Action bar. The Action bar InfoBox looks like this:

The bar consists of five tabs:

1. Basics tab: Allows you to choose whether to use HTML or the Java
applet when viewing this page via a browser.

2. Background tab: Allows you to specify the color of the action bar.

3. Border tab: Allows you to change the action bar borders.

4. Button Background tab: This tab allows you to modify the buttons
options; you can change the color of the button, when the user clicks
the button, or when the user moves the mouse over the button. You
can also add an image inside the button.

5. Button Style tab: This tab allows you to modify the text and the style
of the buttons.

Using the Java applet to display the cascading action buttons we created
earlier, the browser looks like this:

Chapter 4: Forms 105

When you click the menu bar item it expands the menu choices below
the item.

Images Within Forms
There are several ways to add images to your Web pages:

• Copying images through clipboard

• Importing pictures

• Image Resource

Copying Images
1. Copy your desired image to the clipboard.

2. Open the form in Design mode.

3. Click the form where you want to place the image.

4. Choose Edit - Paste.

Importing Pictures
1. Open the form in Design mode.

2. Click the form where you want to place the image.

3. Choose Create - Picture.

4. Select the type of file, click the file to import and click OK.

Tip Often the quality of the image is better when the picture is imported
rather than pasted.

106 Lotus Domino Release 5.0: A Developer’s Handbook

Using Image Resource
1. First, create a new image resource by opening Resource - Image - Design

View.

2. Click the New Image Resource button, select the type of image file, and
then click the file to import. Click OK.

3. Go to the form and move the cursor to the place where you want to place
the image resource.

4. Choose Create - Image Resource, and select the current image for Insert
Image Resource box.

Note Image Resource also supports animated images.

Note Image Resource does not work on the Web.

Alternate Text
Adding alternate text to graphical hotspots allows Web users with text only
Web browsers to see text on the form where the graphic should be. Users
with Web browsers that support graphics will see the alternate text while the
Web browser is loading the graphic. To add alternate text:

1. Select the graphic and choose Picture - Properties.

2. In Alternate Text for Web and Deferred Loading boxes: enter the text to
describe the graphic.

Using CGI Variables
Common Gateway Interface (CGI) is a standard for interfacing external
applications with HTTP servers. When a Web user saves a document or
opens an existing document, the Domino Web server uses CGI variables to
collect information about the user, including the user’s name, the browser,
and the user’s Internet Protocol (IP) address.

To capture this information in a Web application, you have two options:

• Create fields with the same names as CGI variables.

• Use LotusScript agents.

Table of CGI Variables Supported by Domino
The following table lists all the CGI (Common Gateway Interface) variables
which are supported by Domino.

Chapter 4: Forms 107

Domino captures the following CGI variables through a field or a
LotusScript agent. You can also capture any CGI variable preceded by HTTP
or HTTPS. For example, cookies are sent to the server by the browser as
HTTP_Cookie.

Continued

Authentication method that returns the
authenticated user name.

Remote_User

This variable will be set to the remote user name
retrieved from the server. Use this variable only
for logging.

Remote_Ident

The name of the host making the request.Remote_Host

The IP address of the remote host making the
request.

Remote_Addr

The information that follows the question mark
(?) in the URL that referenced this script.

Query_String

The server provides a translated version of
PATH_INFO, which takes the path and does any
virtual-to-physical mapping to it.

Path_Translated

The extra path information (from the server’s
root HMTL directory), as given by the client. In
other words, scripts can be accessed by their
virtual path name, followed by extra information
that is sent as PATH_INFO.

Path_Info

The browser that the client is using to send the
request.

HTTP_User_Agent

Indicates if SSL mode is enabled for the server.HTTPS

The URL of the page the user used to get here.HTTP_Referer

The MIME types that the client accepts, as
specified by HTTP headers.

HTTP_Accept

The version of the CGI spec with which the
server complies.

Gateway_Interface

The length of the specified content as given by
the client.

Content_Length

For queries that have attached information, such
as HTTP POST and PUT, this is the content type
of the data.

Content_Type

If the server supports user authentication and the
script is protected, this is the protocol-specific
authentication method used to validate the user.

Auth_Type

ReturnsCGI Variable

108 Lotus Domino Release 5.0: A Developer’s Handbook

The version of the CGI spec with which the
server complies.

Server_URL_Gateway_Interface

The name and version of the information server
software running the CGI program.

Server_Software

The port to which the request was sent.Server_Port

The name and revision of the information
protocol accompanying this request.

Server_Protocol

The server’s host name, DNS alias, or IP address
as it would appear in self-referencing URLs.

Server_Name

A virtual path to the script being executed, used
for self-referencing URLs.

Script_Name

The method used to make the request. For HTTP,
this is “GET,” “HEAD,” “POST,” and so on.

Request_Method

ReturnsCGI Variable

For more information about CGI, see:

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Using a Field to Capture CGI Variables
When a field has the same name as a CGI variable, Domino copies the field
value from the CGI environment and places it in the field. There are two
things to note:

• You don’t have to specify a formula if the field is editable.

• Make the field hidden when previewed for editing and opened for
editing.

For example, you can create a field named HTTP_USER_AGENT. This field
captures information about which browser the user is using. You can use this
field to see if the user’s browser supports features in your application.

The general format of HTTP_USER_AGENT variable is software/version
library/version. The 11 leftmost characters basically tell you the browser
version. You can evaluate this in formulas and display different things based
on that. For example:

@If(@Left(HTTP_USER_AGENT;11)="Mozilla 3.0";"Netscape
Navigator"; @Left(HTTP_USER_AGENT;11)="MSIE 2.0";"Microsoft
Internet Explorer";"")

Chapter 4: Forms 109

Some of the values returned by HTTP_USER_AGENT are:

Netscape Navigator 4.xMozilla 4.x

Netscape Navigator 3.xMozilla 3.x

Microsoft Internet Explorer 4 or laterMSIE

BrowserReturned Value

Using a LotusScript Agent to Capture CGI Variables
You can use the DocumentContext property of the NotesSession class to
capture CGI variables. The property returns a Notes document that contains
all CGI variables that are applicable to the session. You can use these values
to collect or process information for the current session.

The following example demonstrates how to access CGI variables:

Dim session As New NotesSession

Dim doc As NotesDocument

Dim CGIValue As String

Set doc = session.DocumentContext

CGIValue = doc.HTTP_USER_AGENT

The CGIValue string now has information about a user’s browser.

Tip When submitting a document, CGI variables are calculated twice: Once
when the form is displayed to the user in the browser, and again when the
submit button is clicked and the form is posted back to the server. There are
occasions when you need to capture the state of a CGI variable when the
form is first displayed by the Web browser. For example, when using the
HTTP_Referer field to capture the URL the user has just come from so that
you can take them directly back to that point. In this case, you need to create
a second field on the form that computes the value of the CGI variable: make
the field hidden to the HTML form by using the HTML tag’s
<TYPE=HIDDEN>.

Summary
This chapter explained the main features and functions available to the
application developer when creating forms in a Notes application. It
outlined some of the areas that application developers need to consider
when developing applications for use by both Notes clients and Web
browsers.

110 Lotus Domino Release 5.0: A Developer’s Handbook

This chapter describes the design elements: views, folders and navigators. It
describes how to create and modify them and how to control the information
that they display.

What is a View?
A view lists the documents stored in a Domino database and can be thought
of as a “table of contents” of a database. Each row listed in a view represents
data taken from a single document. Each column represents a field or a
combination of fields taken from that document.

All Domino databases have at least one view, but most of them have more. A
view can display all the documents in the database, or it can display a subset
of the documents. Documents can be viewed by categories, such as creation
date or author. Views can present documents sorted on different fields, for
example, sorted by topic.

What is a Folder?
Folders enable you to store and manage related documents without putting
them into a category, which requires a Categories field in the form used to
create the documents. Folders are also convenient because you can drag
documents to them.

What is a Navigator?
A database navigator is a graphical interface which allows the user to easily
access views, Domino data, or other applications. Navigators can include
graphic buttons or hotspots, which are programmed areas that a user clicks
to execute an action.

Chapter 5
Views, Folders, and Navigators

111

Creating Views
There are several ways to create a new view. If you know about a view in a
different database than the one you are working in, you may want to copy
this view over to your database and customize it to your needs.
Alternatively, you can build a view from scratch.

Copying an Existing View
To copy an existing view:

1. Open the database where the view you want to copy is located.

2. Choose View - Design on the action bar to switch to Design mode.

3. Select Views from the Site Database List.

Note If this database is already in your Site Database List, you may
skip the first two steps.

4. In the View pane, select the view you want to copy.

5. Choose Edit - Copy to copy the view to the clipboard.

6. Open the database in Design mode where you want the view to be
copied.

7. Click the View pane, then choose Edit - Paste to copy the contents of the
clipboard. This creates the new view.

Tip Instead of choosing Edit - Copy and Edit - Paste from the action bar
you may want to use the keyboard shortcuts.

Creating a New View
To create a new view:

1. Open the database in Design mode and switch to the View pane.

2. Click the New View button. (You may also choose Create - View from
the action bar.) The Create View dialog box is displayed:

112 Lotus Domino Release 5.0: A Developer’s Handbook

3. Change the view name from Untitled to a meaningful name of your
choice. You also should provide a view alias at this time by entering the
vertical bar, followed by the alias name after the view name.

4. Select the view type from the pull-down list. The following options are
available:

• Shared

• Shared, contains documents not in any folder

• Shared, contains deleted documents

• Shared, private on first use

• Shared, desktop private on first use

• Private

Caution Shared, Personal-on-first-use views cannot be maintained by
the designer of a database.

5. Select where the new view should appear in the View Menu. Selecting
any position other than the top level will create a cascaded view.

Tip You can also use the backslash character (\) to separate the levels
to create a cascaded view.

6. Click the Copy From button if you would like the view’s design copied
from a different view to the one displayed. This will bring up the Copy
from dialog box:

You can now select a different view design as the default for your new
view.

Note With this method you can only copy the design from an existing
view in the same database.

Chapter 5: Views, Folders, and Navigators 113

7. Decide if you want to specify the view selection using the Search Builder
or the @function language.

Note If you are creating a shared view which contains only deleted
documents or documents not in any folder, you cannot specify any
selection formula.

8. To use Search Builder, click the Add Condition button. This brings up
the Search Builder dialog box:

9. Build your selection criteria and click the OK button.

Note The layout and entry fields in this dialog box change depending
on the condition you choose.

114 Lotus Domino Release 5.0: A Developer’s Handbook

10. When using the @function language the layout of the dialog box changes
to look like this:

11. Click the Fields & Functions button if you want to see a list of all the
fields defined in the database and all the available @functions, along
with their Help documents.

Tip You can paste the field names and @functions from this list into the
formula window.

Tip Clicking the Formula Window button opens an formula input
window where it is easier to enter more complex formulas.

12. If you click the Customize button, the Design window of the new view is
displayed so that you can start your customization. Otherwise, click the
OK button.

Chapter 5: Views, Folders, and Navigators 115

Working With View Properties
To display the View InfoBox:

1. Open the view in Design mode.

2. Click the Properties icon to display the InfoBox. It contains five tabs.

3. On the Basics tab you may specify the name of the view. Including
backslashes (\) in the name will cascade the views in the View menu.
For example: Marketing\Lotus Domino.

Note If you set the name of the view to the reserved word ($All),
Domino will display this view with the name All Documents in the View
menu. With the exception of the reserved names, for example ($All),
($Inbox), ($Trash), and ($Sent), enclosing a view in parentheses means
that the view is hidden and is used solely for programming purposes.
The user will not see it in the list of views.

4. Specify an alias. This is the name you will use in your code. The
advantage of using an alias is that if the name of the view has to be
changed, you need not change your code each time the view name is
mentioned.

5. Specify a comment. The comment entry field is optional, but useful for
maintenance purposes.

6. Choose a style. You can display the documents in a view as a calendar
instead of a table. For example, a Calendar view can display a date, a
meeting or appointment time, a duration, and optional text describing
the entry. To display a view as a calendar the first column must be a
Time/Date field. For more information on creating a Calendar view, see
“Creating Calendar Views,” later in this chapter.

116 Lotus Domino Release 5.0: A Developer’s Handbook

7. Click the Options tab. It looks like this:

• If you select Default when database is first opened, this view will be
used to display the documents.

Note You should always make sure that a database has a default view.
There can only be one view in a database having this attribute. In the
View pane, such a view is marked with a dark blue arrow.

• If you select Default design for new folders and views, this view will
be used as the template when the user creates folders or adds new
views to the database.

• Collapse all when database is first opened will only show the
headings for categorized documents.

• Selecting Show response documents in a hierarchy will show all
response documents indented under their parent documents.

• If the Show in View menu check box is not selected, the view will be
hidden from the View menu in the action bar.

• Furthermore, you may specify the behavior of the view when it is
opened or refreshed.

Chapter 5: Views, Folders, and Navigators 117

8. Click the Style tab:

9. In addition to customizing the Background Color of the view, Column
totals and Unread rows, you can define a color to be used for Alternate
rows.

10. (Optional) You can hide the selection margin.

11. You can have up to five lines for the column headings.

12. As far as rows are concerned, you can also have up to nine lines for each
document, to enable you to store a large description. If you choose to use
these lines, make sure that the check box Shrink rows to content is
selected. It eliminates all the blank lines for documents that do not
require the extra space.

13. Click the Advanced tab.

The Advanced tab provides information on the following topics:

• About the index used to build the view; when it should be refreshed,
and when it should be discarded.

118 Lotus Domino Release 5.0: A Developer’s Handbook

• How users will be notified about documents that were added or
modified since they last opened the view

• Whether unique keys are built in the view for ODBC

• How this view is displayed when viewed with a Web browser

• Restrict initial index build to designer or manager

• If empty categories are displayed or not. Select the Don’t show
categories having zero documents option if there are documents with
a Reader field which may hide these documents from the user at
runtime. If that is the case and there is no document to be displayed
for a specific category, the category will also not be displayed to
the user.

14. Click the Security tab.

In the example below, the view can be used by all users that have access
to the database. If you want to restrict its use to only some users or
groups of users, deselect the check box and add the users or groups that
will be granted specific access.

You may also select the Available to Public Access Users option to
enable non-Notes users to access the view.

15. Close the InfoBox.

Chapter 5: Views, Folders, and Navigators 119

Editing View Columns
We will now take a closer look at column properties. To view the column
properties of a view, open the view in Design mode. You will see a window
like this:

To access the properties of a column, double-click the column heading or
select the column heading and click the Properties icon. The InfoBox will be
displayed.

The Basics Tab

On the Basics tab, you can specify the following:

• The title of the column to be shown in the column heading
• The width of the column
• If this column is related to a multi-value field, how this field will be

displayed

120 Lotus Domino Release 5.0: A Developer’s Handbook

• If the user is allowed to resize the column

• Whether or not the specification of this column is for response
documents

• If the column should be hidden from the user

This means that the column is used for programming purposes only.

• If icons should be displayed in the column

If this box is checked, the width of the column should be 1. Furthermore,
the Programmer’s Pane must contain a formula which evaluates to a
whole number. For example, the following formula determines whether
a document has an attachment and, if so, displays the attachment icon
(number 5):
@If(@Attachments;5;0)

Use 0 as the “false” case when you want to leave the column blank. The
formula above returns 0 when the document has no attachments, so
nothing is displayed. A table of all icons and their associated numbers is
available in the Help database for information. Note that you cannot add
any icons to the predefined set.

• If a twistie will be shown if the row is expandable

This option means that for a categorized row (see below), the value of
this field is not shown on every row, but as a header to the documents in
that category. When a user displays the view, an arrow will be shown
next to those categories that can be expanded.

Note The column width for such a row can be set to 1 because the value
of the field is shown on a single line.

The Sorting Tab

Chapter 5: Views, Folders, and Navigators 121

On this tab, you can specify whether or not the documents displayed in the
view should appear in a sorted order, and if yes, what the rules are for
sorting. You do this by making the following selections:

• Select None, Ascending, or Descending as the sorting rule.

• Specify Standard or Categorized as the sorting type.

• Specify sorting rules for case and accent sensitivity.

• Choose options for multiple values and categories.

• Select if you want the user to be able to alter the sort order.

Tip Using this option allows the user to specify a secondary sort
column, as well.

• Select a value from the Totals pull-down menu if you would like to
display some statistics in the view.

The Font and Style Tabs
• The Font tab lets you set the font and color used when displaying fields

in this column.

• Use the Number tab to specify the display format of numbers in this
column.

• Use the Time tab if you are going to display date/time values in this
column.

• The Title tab allows you to set the font and color of the column title.

• Use the Advanced tab to force the values in this column to be used as
document links when this view is displayed in a Web browser.

Creating Calendar Views
There are some rules that you must follow in order to create a Calendar
view. You start creating like any other view described above, but on the
Basics tab of the InfoBox you specify Calendar as the style. This tells Domino
to display the documents in this view using the Calendar Outline.

Defining Columns
You must define the first two columns as described below in order for the
view to function properly:

• The first column must be sorted and has to contain a Time/Date value or
a list of Time/Date values. Also, make sure that the Show Multiple
Values as Separate Entries option is selected in the Sorting tab of the
InfoBox for this column. This causes documents containing a Time/Date
value list to be displayed on more than one day in the calendar which
you can use, for example, for repetitive events.

Make this column hidden.

122 Lotus Domino Release 5.0: A Developer’s Handbook

• The value for the second column must evaluate to a duration in minutes,
for example, (EndDateTime - StartDateTime)/60. If the duration is not
relevant for your view, set the value to zero.

Make this column hidden.

Note Column headers are not displayed in Calendar views.

Customizing the View Layout
Use the Style tab of the View InfoBox to fine tune your settings:

If you select Show conflict marks, a vertical line is displayed in front of
entries for appointments which are scheduled for the same time.
Furthermore, you might not want to show the selection column in order to
save space. The selection column will be shown automatically if there are
selected documents in the Calendar view.

Note A document marked for deletion will appear with the strike-through
mark.

Use the Time/Date tab to specify the defaults for time slots:

Chapter 5: Views, Folders, and Navigators 123

It is also a good idea to build your own column for displaying the start and
end time of appointments. Make sure that you set the display to Time only in
the column InfoBox. Additionally, you might want to truncate the seconds
from the value in order to show only hours and minutes to the user.

Enhancing the Functionality of a Calendar View
To allow the user to easily add entries in the Calendar view, consider
associating the following LotusScript samples with your view. They allow
users to add an appointment by double-clicking in the Date/Time area.

Note The example assumes that the variables ws and ClickedDate are
already declared.

1. Add the following to the Regiondoubleclick event of the view:
Set ws = New NotesUIWorkspace

If source.CalendarDateTime<>"" Then

 Call ws.ComposeDocument("", "", "Appointment")

End If

2. Add this LotusScript code to the QueryOpen event of the Appointment
form:
Set ws = New NotesUIWorkspace

ClickedDate = ws.CurrentCalendarDateTime

ClickedDate is a global variable which is used to set the start date of the
new appointment as default.

Summary
Below is a checklist with the most important things to consider when
creating a view.

Checking View Design
• Is there a default view for the database?

If not, double-click the view that should be the default and choose
Design - View Properties. Click the Options tab and select the Default
view when database is first opened option.

• Is there a view that is displayed by date?

If not, make a Date column sortable or add a view that sorts documents
by date, so that users can view documents in chronological order.

• Do all views appear correctly on the View menu? Are the appropriate
keyboard shortcuts used? Do the views appear in the correct order?

124 Lotus Domino Release 5.0: A Developer’s Handbook

If not, verify the names and the Show in view menu selection in the
View InfoBox.

Tip You may consider numbering your views. This also helps
Helpdesk members to identify the view when receiving a telephone call
from a user.

• Is the information in the view easy to read?

If the view appears cluttered or the columns are too close together, reset
the column width and alignment.

• Are all the documents that should be in the view displayed, or are too
many documents displayed?

If the view is not displaying the correct documents, check the view
selection formula.

• Are response documents indented?

If they are not and you want to indent responses, select Show response
documents in a hierarchy on the Options tab of the View InfoBox, and
create a column for responses.

• Do response documents correspond to the correct main documents?

If not, verify the view selection formula; also be sure that the
responses-only column is placed directly to the left of the column that
displays the main document information.

• If the view uses categories, do the categories appear correctly?

If not, create a sorted, categorized column and use the name of the
appropriate keyword field as its formula.

• If the view is used for programming purposes, make sure that it is a
hidden view.

• Check workstation compatibility. Are all fonts used in this view
available (or approximated) on all workstations? Are column widths
sufficient for all workstations?

• If needed, does the view have a read access list?

To create a read access list, select the Security tab in the View InfoBox.

• If the view is designed for Web access, keep it simple.

Chapter 5: Views, Folders, and Navigators 125

Checking Columns
• Is the information in each column correct?

If not, verify the formulas in the column definitions.

• Is the column returning values of the appropriate data type?

If not, verify the field formula. Columns display only simple text;
therefore, you may need to use @TEXT in the formula to display values
from numbers or time fields.

• Is each column displaying all the information that is contained in it?

If not, you may need to adjust the column width and/or the font used to
display the column.

• Are the contents of columns aligned properly?

For example, numbers should be right-aligned; text should be
left-aligned or centered. Verify the alignment for each column.

• Are documents in the right order?

If not, make sure that you sort on the correct columns, and that you
choose the correct sort order (ascending or descending).

Shared and Private Views
Views can be either shared views available to many users, or personal views
used by one person. You designate the view type when you create it, and
you cannot change it later.

Shared Views
Shared views are views that are available to any user with at least Reader
access to the database. Most views that you design for databases are shared
views. Users with Designer or Manager access can create shared views, and
so can Editors when the database manager has selected Create personal
Folders/Views for them in the access control list.

Shared, Personal-on-First-Use Views
Shared, Personal-on-first-use views are a convenient way to distribute
customized personal views to multiple users. You usually create this type of
view by using @UserName to customize the display for each user.

126 Lotus Domino Release 5.0: A Developer’s Handbook

After a user saves a Shared-to-personal view, the user’s copy of the view no
longer inherits design changes. For example, if you add a column to the
view, anyone using a personal version of the view won’t see the new
column. To obtain design changes, users must delete their personal versions
of the view and open the Shared-to-personal view again.

Note Shared-to-personal views are not a security measure, because they do
not protect data. If you create a Shared-to-personal view that omits certain
documents, a user can still create a personal view that includes them.

Shared-to-personal views are stored in the database as long as they are
shared. After the first use, Domino uses the Create Personal Folders/Views
option to determine where to store the view.

Personal Views
Users can create personal views to organize documents in personalized ways
by choosing Create - View.

If a user has rights to create personal views/folders in the access control list,
personal views are stored in the database. If the user does not have the
access control list right to create personal views/folders, personal views are
stored in the user’s personal workspace file.

Creating a Button on the Action Bar
You can create an Action bar in views and folders, as well as in forms. In
general, the actions should do one of the following:

• Affect several documents or all the documents displayed in the view.
You could store all documents created by your manager in a Manager
folder, for example.

• Represent the actions that the user will perform most often.

As in forms, you must make sure that the actions you create will fit in the
Action bar, and you must also consider the screen resolution available to
your users.

Creating a Document Link Using an Action Button
As an example, we are going to develop an action that creates a Document
Link between two documents. The documents do not have a child-parent
relationship.

Chapter 5: Views, Folders, and Navigators 127

To create a button in the Action bar:

1. Open the design of the ($All) view.

2. Choose Create - Action. The InfoBox for the Action properties is opened
and you now have access to the Programmer’s Pane. Fill in the
Information tab as shown here:

3. Put the following @function statements into the Programmer’s Pane:

The document selected from the view is copied to the clipboard:
@PostedCommand([EditMakeDocLink]);

The form Document is created:
@PostedCommand([Compose]; ""; "Document");

The macro goes to the field Body:
@PostedCommand([EditGotoField]; "Body");

It pastes the doclink into the RichText field:
@PostedCommand([EditPaste]);

It then positions the cursor back at the top entry field:
@PostedCommand([EditTop])

128 Lotus Domino Release 5.0: A Developer’s Handbook

Testing the Formula
To test the formula:

1. Select the All Documents view.

2. Click one of the documents to highlight it.

3. Click the Link Documents button on the Action Bar. The document is
opened for creation, the doclink is pasted, and the cursor is positioned in
the first entry field.

4. Double-click on the DocLink to open the document that was selected in
the view.

Properties of Actions and the Action Bar
Actions and Action bars have properties that you can display by selecting
the action in the Action pane of the view or folder design window.

These properties are identical to the ones found in the Form Action bar.

Working With Views as a Developer
As an application developer, you may have additional requirements for a
view in a database than a regular user. Therefore, you will probably build
“administrative” views to be able to keep an eye on columns which are
hidden to regular users, for example, create an All Documents view, or a
view showing replication and save conflicts (using the $Conflicts field).
These views are also a great help for administrators when the database is
used in the production environment.

Tip There is an undocumented interface for displaying views. Hold down
the CTRL+SHIFT keys and double-click the database icon. This opens the
database showing the hidden views as well as the normal views.

While you are testing your application, you will probably need to inspect
field values which are hidden on the form. Using the method described
below, you can inspect a form’s fields and their values without creating
special views. To do so, look at the properties of a document:

1. Select any one of the documents displayed.

2. Click the Properties icon.

Chapter 5: Views, Folders, and Navigators 129

3. Click the Fields tab to see the list of fields for that document as well as
their values.

When files are attached to a document, a field called $FILE exists. Scroll
down the right listbox to see the file information. Here you can see the file
name and size and the platform on which it was created. There are also other
keywords, such as $Revision, $Links, $UpdatedBy, $Conflicts, and
$Anonymous.

Note As you can see, all the reserved fields start with a dollar sign ($).
Make sure not to prefix any of the fields you create with this character.

The field replication mechanism allows for a faster transfer of information
across servers or between the servers and workstations. An indicator is
attached to each field in all documents: Seq Num (or sequence number). If
you have a replica of a server database, compare the values of the sequence
number for fields of a replicated document. If their values are different, this
means that the field containing the lower value will be modified at the next
replication.

Tip To benefit from field replication, once you have finished developing
your form, create a document using the form and check the values of this
indicator for all the fields in the document. It will help you separate the
fields that are frequently updated (and replicated) from the ones that are not.
This could have a major impact on the replication throughput, especially if
some of the fields contain large volumes of information such as graphics,
large attached files or multimedia objects (video or sound).

130 Lotus Domino Release 5.0: A Developer’s Handbook

Views and the Web
Domino dynamically creates Web pages from the views in a database,
including URL links to the documents in the view. Using a Web browser, a
user can navigate, expand, and collapse the view in much the same way as
they can from a Notes client.

Using the Default Display
When a browser is used, the view is split into pages with 30 lines per page.
This is to avoid having a view containing hundreds of documents presented
as one page with all the documents. Limiting the lines per page in this way
improves performance and makes navigation of the database more
manageable.

Note The default of 30 lines per page can be changed in the HTTP section
of your server document.

When Domino generates the HTML page for a view, it maintains the column
and row format of standard Domino views. There are, however, a number of
differences that you need to be aware of and to take into consideration when
you develop applications for the Web.

Tip To improve Web performance (and performance on any other view for
that matter), avoid time-sensitive column formulas with @functions such as
@Now, @Created, @Modified, and so on. Since the Domino Web server
generates Web views as HTML pages on the fly, time-sensitive formulas
recalculate every time a Web user works in the view, for example, when they
open, scroll, or expand the view. Instead, create a field in the form for that
formula and refer to the field in your view.

Chapter 5: Views, Folders, and Navigators 131

The following figure shows an example of a categorized view as seen
through a Web browser:

Notice that there is no outline of available views on the left. Domino does not
include a view outline by default on Web pages. Furthermore, Domino also
ignores any menu actions not supported on the Web. Also, notice that there
is no selection column.

As you can see, Domino has automatically created a Web navigation bar at
the top and bottom of the screen. This navigation bar contains buttons that
users click to Expand, Collapse, Scroll, and Search the view.

On the Web, users open documents by clicking a document link column
rather than clicking anywhere in the row, as you do in the Notes client. The
application designer can specify which column(s) should include a URL link
to the document. By default, it is the first non-categorized column.

Domino displays the width of a column in a view as the length of the longest
entry in the column, regardless of what the column width is set to in the
Column InfoBox.

Tip To force a column to be limited to a certain width when viewed from
the Web, use a column formula to retrieve the field value, for example:
@Left(FieldName;50)

This formula will set the widest width of the column to 50 characters.

132 Lotus Domino Release 5.0: A Developer’s Handbook

To avoid having long columns pushed to the right of the display, use the
Style tab in the View InfoBox and specify a number greater than 1 in the
Lines Per Heading setting. This causes the lines to wrap on the Web. If you
specify 1, the lines will not wrap. The same guidelines apply to column
headings.

Using Java Applets for Display
In Domino Release 5.0 there is a Java applet which allows you to display a
view in a more Domino-like outline. You activate this applet by selecting the
Use Applet in Browser option on the Advanced tab of the View InfoBox.

A view served as an applet supports such “Notes-like” features as
expandable/collapsable categories, resizable columns, and multiple
document selection.

Using HTML Formatting for Views
You can add HTML to your column formulas to enhance the view when it is
displayed on the Web.

Treating the View Contents as HTML
You can override the default row and column settings for a view by using
HTML formatting attributes stored in a column.

Chapter 5: Views, Folders, and Navigators 133

In Domino, the view displays as a standard view. On the Web, the view uses
the HTML formatting attributes that you specify in the column formula. You
must include HTML that defines all formatting and document linking for the
view.

1. Open the view in Design mode and choose Design - View Properties.

2. Click the Advanced tab and select For Web Access: Treat view contents
as HTML.

3. Create a column.

4. In the design pane, click Formula and enter the HTML code in the edit
window.

Note Domino performs no HTML translation on view elements. Therefore,
no action buttons will be displayed.

Enhancing the View Display Using HTML
You can also add some HTML coding to the view in order to enhance the
display on the Web.

HTML embedded in views is a browser-only feature. If you embed HTML in
a view, the view is accessible by a Notes client, but the client interface will be
unattractive (because of the exposed HTML tags). There is no option to hide
a column from Notes client users as in the case of forms and views. A
column is either hidden or visible to both Web and Notes client users.
Although you can see the HTML tags from the Notes client, the features that
the HTML coding provides, such as linking, are not available to Notes
clients.

Unlike forms and documents, there is no pass-thru-HTML option in the
design interface. To write HTML in views, you need to include the HTML
code in square brackets ([]). Domino treats everything between the square
brackets as pass-thru HTML.

Here are some examples of how you might want to use HTML in views. The
following section explains how to implement several of these examples.

• Insert a blank .GIF file between two columns in order to get a little more
space between the columns on the Web.

• Add a horizontal ruler spanning the entire view for each document
category.

• Add a couple of icons and a URL link to the Home Page in the column
headers.

• Include an HTML statement in the formula for a column to display a
blinking text string if it is a newly created document.

• Include a URL in a couple of documents and jump directly to the URL
from the view.

134 Lotus Domino Release 5.0: A Developer’s Handbook

Adding a Space Between Columns
1. Create a new column between two columns and set the column width to

one (1). Deselect Show values in this column as links if not already done.

2. Select Formula in the Programmer’s Pane and insert the following
HTML code, including the quotation marks (this is a text string):
"[]"

Note The “ecblank.gif” is one of the standard icons that come with Domino.
It is located in the icons subdirectory on the Domino server.

Adding HTML and Icons to Column Headers
You can use the column Title field in the column properties box to add
graphics and pass-thru HTML to your column headings. The only limitation
is that you can only fit 64 characters into the column title.

1. Open the InfoBox of a categorized column, and in the Title field add the
following line (no quotation marks):
Sort []

This will add a small green arrow to identify where to click to sort the
column on the Web. Browser users might not be familiar with the little
triangle if they are not familiar with the Notes client.

2. Open the InfoBox for any other column. In the title field enter:
[<img src=/icons/vwicn069.gif
border=0>Home]

This will add an icon with a DocLink to the home page from the column
header.

Click the Title tab and select Right Alignment.

Adding HTML to Column Formulas
1. Select a categorized column. In the Programmer’s Pane, click the

Formula button and enter the following formula for the column:
Categories + "[<hr>]"

This will display the value of the Categories field and then add a
horizontal rule. Notice that the plus (+) sign is used to append values.

2. Add a column and enter the following formula:
@If(@Now>@Adjust(@Created;0;0;7;0;0;0);"";"[<blink> New </blink>]")

The formula checks to see if the document was created within the last
week and if so, it will display a blinking “New” text string.

Note The HTML blink tag is not supported on all browsers.

Chapter 5: Views, Folders, and Navigators 135

Creating URL Links at View Level
You can add HTML to the document fields displayed in the view columns in
the same way. By adding a URL address to a document, you can display URL
links in a view, enabling users to jump directly from the view level to a URL.

Note You could also calculate the HTML in the view, which is useful if you
want to use the same document but different views for Web browsers and
Notes clients.

1. Create a new document and include the following in a field that will be
displayed in the view such as the Document title.
[]LotusDevelopment Corp.[]

2. Save your document and create a new one. Enter the following URL:
[]Notes.Net[]

3. Save your document.

Both documents take you directly to their respective Web sites.

Domino View Properties Not Supported on the Web
Avoid using the following view and folder features in a Web application:

Views can be re-indexed at a Domino server.

These features are not supported using HTML in a Web
browser.

Advanced properties
Refresh index options
Discard index options

These features are not supported using HTML in a Web
browser.

Style properties
Unread rows
Alternate rows
Show selection margin
Beveled column
headings

This feature is not supported using HTML in a Web
browser.

On Refresh options

This feature is not supported using HTML in a Web
browser.

On Open: Go To…
options

Web applications do not have a View menu. To exclude a
view from the folders navigator, use the Design - Design
InfoBox to hide the view from Web users or surround the
view name in parentheses, for example (HiddenView).

Show in View menu

Web views do not expand or collapse all; instead they
expand or collapse only one category at a time
(equivalent to Expand/Collapse Selected Level).

Collapse all when
database is first opened.

This feature is not supported using HTML in a Web
browser.

Options properties

ReasonViews and Folders

136 Lotus Domino Release 5.0: A Developer’s Handbook

Triangles are always shown.Show twistie when row is
expandable

This feature is not supported using HTML in a Web
browser.

Basics properties

ReasonColumns

Hints and Tips on Designing Views
The section below contains a collection of hints and tips. You may find them
useful when you are going to design or change a view.

Naming Views
The name that you choose for a view is visible to Notes client users in the
View menu, to Web users in the Views list, and in the Folders pane (unless
the view is hidden). The name is case-sensitive and can be any combination
of characters, including letters, numbers, spaces, and punctuation. The full
name, including all alias names, can be up to 64 characters.

Naming Tips
Views appear in alphabetical order in menus and lists. To force names to
appear in a different order, number or letter them. This also allows Helpdesk
members to easily identify the view.

When possible, assign a name that indicates how the view sorts documents,
for example, By Company Name or All by Category, or specifies which
documents it includes, for example, New Customers.

Use consistent names across databases to make it easier for users to
recognize views.

Alias Names
An alias is an internal name for a view. Usually you use this alias for
programming purposes, for example, in @DbColumn formulas. Aliases
follow the same naming rules as view names.

You can append more than one alias name by entering the | (vertical bar)
symbol followed by the alias name. Always keep the original alias as the
rightmost name.

Main View | View1

Chapter 5: Views, Folders, and Navigators 137

Changing a View Name
You can edit the view name or alias name in the View InfoBox when the
view is open in Design mode. If you change the name of the view, copy and
paste the previous name into the Alias box to the left of any other aliases,
using the | as the separator.

For example, a movie database contains a view named By Screening Date.
The name of this view is going to be changed to By Premiere Date. Here is
how the name will look after it has been changed:

By Premiere Date | By Screening Date | DateView

Hidden Views
When you surround a name with parentheses, for example (All), the view
does not appear to Notes client users in the Domino view menu, or to Web
users or Notes client users in the Folders pane.

Cascading Views
If you don’t want to overwhelm users with long lists, or if you have related
views that should be grouped together, you can arrange them in a hierarchy
so that a group of related menu items are organized under one item in the
navigator pane. A user clicks on the higher-level name to display the
cascaded list.

If you didn’t specify a cascading view when you created the view, enter the
name you want to appear on the Create menu followed by a \ (backslash),
followed by the view name. For example, the Personal Address Book
template has two views related to servers:

Server\Certificates

Server\Connections

Overview of Styles
The following tables give an overview of the most important settings:

Useful for large views
with many categories or
topics. Not applicable to
Calendar views.

Displays the top level
category in categorized
views or the main
documents in a hierarchical
responses view. Users click
the category to see
individual documents within
the category.

Collapse all when
database is first opened

White, light blue, and
yellow are good choices.

Determines the background
color for the view.

Color: Background

CommentsDescriptionView styles

138 Lotus Domino Release 5.0: A Developer’s Handbook

Fills out the last column to
avoid empty space in the
view.

Extend last column to
window width

Not applicable to
Calendar views.

Shows a green triangle next
to a column that displays
categories or response
documents.

Show twistie when row is
expandable

More space makes each
row easier to read. Less
space condenses the view
contents to make them
useful for reports or Web
users.

Determines how much space
there is between rows.

Row spacing (Single,
1-1/4, 1-1/2, 1-3/4,
Double)

Keeps gaps from appearing
below rows that are shorter
than the number of lines per
row you select.

Shrink rows to content

If you deselect “Show
selection margin,” users
can still select documents
by pressing and holding
SHIFT as they click
document names. The
selection margin appears
temporarily while
documents are selected,
and hides again when all
documents are deselected.

Shows the document
selection margin. Deselect
for cleaner-looking rows.

Show selection margin

Useful for multi-line
rows. Not applicable to
calendar views.

Determines the color that
alternates with the
background color to
highlight every other row.

Color: Alternate rows

Red is used for unread
documents in template
designs.

Determines the color for
unread documents.

Color: Unread rows

“Shrink rows to content”
and “Color: Alternate
rows” are useful
accompaniments to
multi-line rows.

Determines how many lines
a row can contain.

Lines per row (1-9)

CommentsDescriptionRow styles

Chapter 5: Views, Folders, and Navigators 139

Determines the color of the
Totals for any columns that
contain totals.

Color: Column totals

Useful for long column
titles or instructions placed
in a column title.

Determines how many lines
a column title can wrap.

Lines per heading (1- 5)

Beveled-background is
gray.
Simple-background
matches view color.

Shows a bar at the top of the
view with column titles with
either a beveled or flat look.

Show column headings
(Beveled, Simple)

Useful for making columns
more readable if they
contain several values
(usually generated by a
multi-value field).

For any documents that
display multiple values in
the column, separates each
value with punctuation or a
new line.

Multi-value separator

Useful for columns used
for sorting that contain
values users don’t need to
see. This is not a security
feature.

The column title and values
do not display to users.

Hide column

Use the “Apply to All”
button to change the text
style for all columns that
display text in the view.

Determines the font, size,
color, and alignment of
values that display in this
column.

Text style and color:
Column values

Use the “Apply to All”
button to change the text
style for all titles in the
view.

Determines the font, size,
color, and alignment of an
individual column title at the
top of the view.

Text style and color:
Column title

(Optional) Select
“Resizable” to allow users
to change the width as
needed.
With the view in Design
mode, you can also click
the column and drag the
column divider line to the
width you want.

Determines how many
characters fit in one row of
a column.

Column width

CommentsDescriptionColumn styles

140 Lotus Domino Release 5.0: A Developer’s Handbook

Identifying Unread Documents
To help users find new or modified documents, display the unread marks
(asterisks) next to unread documents in the view. A set of unread marks are
maintained for each user, so even if one person has read a particular
document, the asterisk still appears for other users who have not yet read
that document.

Choosing a Style for Unread Marks
These options are set as a Design property for a view. Open the Advanced
tab of the View InfoBox and select an “Unread marks” option.

You can display unread marks as:

• Standard (compute in hierarchy). Displays asterisks for unread Main
documents and Response documents, and for any collapsed categories
containing unread Main or Response documents.

• Unread documents only. Displays asterisks only for unread Main or
Response documents. Unread marks do not appear next to collapsed
categories. This choice displays the view faster than the standard
display, and is a good compromise between showing unread marks at
every level and not showing them at all.

Choosing the option None omits unread marks. Users can still navigate to
the next unread document using SmartIcons.

Choosing a Color for Unread Marks
To change the color of unread documents in the view from the default color
red, click the Style tab and select another color for Unread rows.

Disabling Unread Marks for Modified Documents
If the unread status of modified documents is unimportant to users or if the
database resides on a server that users don’t access directly, turn off unread
tracking for all documents in a database to conserve disk processing time.
Click the Design tab of the Database InfoBox and select Do not mark
modified documents as unread. This setting affects all views in the database.
Users see only new documents as unread; modified documents do not
appear as unread.

Using Categories in Views
A view that displays categories enables users to find related documents. A
categorized view is neat and easy to scan. Users can collapse the categories
to display only the category names and then expand categories individually,
or expand the whole view.

Chapter 5: Views, Folders, and Navigators 141

To categorize a view, create a column to display categories and then select
the Option Type: Categorized on the sorting tab of the column infoBox. A
categorized column groups documents with matching values and converts
the value to a category name. The column is usually one that appears on the
left side of the view. This column must always appear to the left of any
sorted columns.

The setting of the following options is recommended:

• Style the column text with a different color and in boldface to make
categories stand out.

• Select the Basics view property Show twisties when row is expandable to
display a green triangle that users click to see categorized documents.

• Select the Options view property Collapse all when database is first
opened to show only the category names when users open the view.

Creating an All by Category View
To allow users to categorize documents with Actions - Categorize, a
database must have the following components:

• A form with a Categories field

• Field name: Categories

• Data type: Editable Text or Keywords field

• Select Allow multi-values

• Format: If you selected Keywords, leave the keywords list blank and
select Allow values not in list

• A view named All by Category

• A Categories column, placed as the leftmost column in the All by
Category view:

• Width: 1 character

• Column title: Leave the column title blank

• Formula: Categories

• Sort the column by selecting Sort: Ascending and Type: Categorized

142 Lotus Domino Release 5.0: A Developer’s Handbook

Presenting Views to Users
Several options in the view and database InfoBoxes determine the initial
display of a view.

Opening to a Particular Row in a View
To highlight a particular row when a user opens the view, select one of the
following On Open options on the Options tab of the View InfoBox:

• Go to last opened document (the default choice)

• Go to top row

• Go to bottom row

Collapsing a View to Show Only Categories
If you have a view that displays categories, you can show the view in
collapsed form every time users open it by selecting Collapse all when
database is first opened on the Options tab of the View InfoBox.

Displaying the Last-Used View
If you select Restore as last viewed by user (one of the On Database Open
choices on the Launch tab of the Database InfoBox), Notes client users see
the default view the first time they open a database, and afterwards they see
the last view they opened. This option isn’t available for views opened by
Web browser users.

Embedding Views
To embed a view on a form, do the following:

1. Open the form in Design mode.

2. Select Create - Embedded Element - View. The following window is
displayed:

Select a view from the list, or select Choose a View based on formula if
you want to have a dynamic selection.

3. Click OK and the view will appear on your form.

Chapter 5: Views, Folders, and Navigators 143

4. Click the Properties icon to bring up the InfoBox.

5. On the Information tab specify how this view is displayed through a
browser.

Note You can only change the numbers to be displayed in the browser
if you select the Never option button.

6. Click the Element tab.

• Check Fit to available width if you want Domino to determine the
width of the view. Use the Percentage selection to refine your
selection. Otherwise, provide a width value for the view.

• Select a Background Color for the view.

• Specify the Height of the view.

• Check Disable Scrollbars if scrollbars are not to be available to the
user.

• Check Show Contents only if there should be no column headers
displayed.

7. Use the Font, Alignment, Page Break, and Hide When tabs as you would
for any other design element.

144 Lotus Domino Release 5.0: A Developer’s Handbook

8. Go to the Object Browser and select Embedded View - Show Single
Category, and specify a selection formula. This allows you to display
only one category based on a formula.

Hiding Views

Hiding a View from Notes Client Users
There are several ways to hide a view:

• Deselect Show in view menu on the Options tab of the View InfoBox.

Omitting a view from the View menu applies only to Notes client users,
since Web users don’t have access to Domino menus. The view still
appears in the Folders pane when users choose View - Show - Folders.

• Open the Design toolbox, click the view name in the right pane, and
choose Design - Design Properties. Select the Hide design element from
Notes R4.6 or later clients option.

Hiding a view from Notes clients is useful when you have a Web-only
view or when you want to remove the view from both the View menu
and the Folders pane.

• Give the view a name and enclose it in parentheses, for example,
(Hidden).

Hiding a View from Web Users
• Open the Design toolbox, click the view name in the right pane, and

choose Design - Design Properties. Select Hide design element from Web
clients option.

Hiding a view from Web clients is useful when you have a Notes-only
view, or when you want to remove the view from the folders pane and
the Open Database Views list.

• Give the view a name and enclose it in parentheses, for example,
(Hidden).

Showing a View to Users of Older Notes Releases Only
When you have a view tailored to users of older Notes releases, open the
Design toolbox, click the view name in the right pane, and choose Design -
Design Properties. Click the Design tab and select Do not show this design
element in menus of Notes R4 or later clients. The view will then not appear
to anyone using Notes Release 4.0 or later.

Chapter 5: Views, Folders, and Navigators 145

Formatting Date and Time Columns
To format values that result in a time or date being displayed in a column,
select a style in the Calendar tab of the Column InfoBox.

Adjust time to local zone
Always show time zone
Show only if zone not local

Time zone

hour:minute
hour:minute:second

Time format

month/day
month/year
month/day/year

Date format

Date and time
Date only
Time only
“Today” and time

Show

SelectionsOption name

• “Today” and time show values resulting in the current date with the
word “Today.” Values resulting in the previous day display
“Yesterday.” All other values display the date.

• If you have an international date format set in your operating system,
these choices change to suit the national conventions, for example, from
month/day to day/month.

• If you have an international time format set in your operating system,
these choices change, for example, from 02:30 to 14:30.

• You have three choices for time zone displays:

• “Adjust time to local zone” displays the time relative to the time zone
of the reader. A document created at 3:00 P.M. in New York that is
read by a user in Los Angeles adjusts to Pacific Standard Time; the
creation time is displayed as “12:00 P.M.”

• “Always show time zone” displays the time zone where the
document was created. With this option, the creator’s time zone is
always shown. If a document is created in New York at 3:00 P.M., a
user in Los Angeles sees the creation time as “3:00 PM EST.” A user in
New York also sees the creation time as “3:00 PM EST.”

• “Show only if zone not local” displays the time zone where the
document was created only when the document is read by someone
in a different time zone. A document created in New York at 3:00
P.M. displays to all users in the U.S. Eastern standard time zone as

146 Lotus Domino Release 5.0: A Developer’s Handbook

“3:00 PM.” Users in all other time zones see the creation date as “3:00
PM EST.”

Formatting Numbers in Columns
To format values that result in a number being displayed in the column,
select a style on the Number tab of the Column InfoBox. The following
selections are available:

• General. Formatting displays numbers as they are entered; zeroes to the
right of the decimal point are suppressed. For example, 6.00 displays
as 6.

• Fixed. Formatting displays numbers with a fixed number of decimal
places. For example, 6 displays as 6.00.

• Scientific. Formatting displays numbers using exponential notation; for
example, 10,000 displays as 1.00E+04.

• Currency. Formatting displays values with a currency symbol and two
digits after the decimal symbol; for example, $15.00. The currency
symbol and thousands separator that appear are based on settings in
your operating system.

The following additional formatting options also apply:

• For any formatting type other than General, select a number from 1 to 15
from the Decimal Places list.

• Select Percentage (value * 100)% to display values as percentages; for
example, to display .10 as 10%.

• Select Parentheses on Negative Numbers to display negative numbers
enclosed in parentheses; for example, (5) instead of -5.

• Select Punctuated at thousands to display large numbers with the
thousands separator; for example, 1,000 in English, or 1.000 in French.

Indenting Response Documents
Indenting Response documents beneath Main documents is useful when
readers want to see the progression of a discussion. You can display 32 levels
of responses, with each level indented three spaces under its parent
document.

Such a view requires that:

• Response forms are available to users with the types Response and
Response-to-Response.

Chapter 5: Views, Folders, and Navigators 147

• The Show Response documents in a hierarchy option is selected on the
Options tab of the View InfoBox, and the document selection formula
uses SELECT @All or contains a formula that allows response
documents to be included, such as:

SELECT Form = “Action Item” | @IsResponseDoc

• The view has a responses-only column.

• The responses column is created immediately to the left of the column
under which responses are to be indented. Leave its title blank, make its
width 1, and select Show Responses only on the Information tab of the
Column InfoBox. Enter a column formula that displays information
about the response documents shown in the column, such as their
authors or creation dates.

Sorting Documents in Views
Every view needs a sorting method that organizes documents in a way that
makes sense to users. For example, a By Date view sorts documents by their
creation dates, and a By Author view sorts documents by author names. To
achieve this effect, designate at least one column as a sorting column. You
can then define it as a user-sorted column, an auto-sorted column, or both.

Views that display categories often use sorting methods to sort the category
names into alphabetical order. If the sort column displays values from a
multiple-value list, select Show multiple values as separate entries to show
each value as a separate row. If you don’t select this option, multiple values
display as one entry and are sorted by the first value.

Ascending and Descending Order
Columns sort documents in either ascending or descending order:

• Ascending order sorts in increasing order (1 precedes 2, A precedes B,
earlier dates precede later dates). For example, to display documents
from the oldest to the newest, create a Date column that uses the
Creation Date as its value and sorts documents in Ascending order.

• Descending order sorts in decreasing order (2 precedes 1, B precedes A,
later dates precede earlier dates). For example, to display documents
from the newest to the oldest, create a Date column that uses Creation
Date as its value and sorts documents in Descending order.

Auto-Sorted Columns
To set up a sorting style in advance, select the option Sort: Ascending or Sort:
Descending on the Sorting tab of the Column InfoBox. The sorting column is
usually the one that appears on the leftmost side of the view.

148 Lotus Domino Release 5.0: A Developer’s Handbook

User-Sorted Columns
Users see a triangle next to a column title where values can be re-sorted.
Users click the column and choose a sorting method to see the documents in
the order that they choose. To set up a user-sorted column, select the Click
column header option to sort on the Sorting tab of the Column InfoBox.
Next, select Ascending or Descending order, or select Both to allow users to
cycle between ascending sort order, descending sort order, and no sort order
for the column.

Multiple Sorting Columns
To create multiple levels of sorting, designate more than one column as a
sorting column. For example, if a primary sorting column sorts entries by
date, a secondary sorting column might sort entries by author. Then all
documents created by one person on a particular date are grouped together.

Using an Auto-Sorted Column as the Secondary Sorting Column
To add a secondary sorting column, add a column to the right of the first
sorting column and then choose Sort: Ascending or Sort: Descending.
Documents and responses are sorted, then sub-sorted, in column order from
left to right.

Designating a Secondary Sorting Column for a User-sorted Column
User-sorted columns override the sorting built into auto-sorted primary and
secondary columns. If the view has a user-sorted column and you want to
include secondary sorting, you can associate it with a secondary sorting
column. In the Column InfoBox for a user-sorted column, click Secondary
Sort Column and choose the secondary sort column and its sorting order.

Character Sorting Rules
Domino sorts characters in the following order:

1. Numbers

2. Letters

3. Accented letters

4. Punctuation/special characters

Sorting rules are also governed by these options:

• Case-Sensitive Sorting. Displays uppercase letters before lowercase
letters. For example, A sorts before a.

• Accent-Sensitive Sorting. Sorts accented letters in the sorting order
appropriate to the language being used at the workstation.

Chapter 5: Views, Folders, and Navigators 149

Overriding Alphabetical Sorting with a Hidden Column
The sorting column does not need to be visible. Sometimes you may want to
use a hidden column that selects documents according to criteria that you
specify in a formula as your sorting column. For example, a Service Request
form contains a Priority field, which uses the following keywords list:

• Urgent

• High

• Medium

• Low

You want the By Priority view to sort documents by the value in the Priority
field, but you don’t want them to appear in ordinary alphabetical order
(High, Low, Medium, Urgent). You want users to see Urgent-priority
documents at the top of the view, High-priority documents next, and so on.

To do this, create a column that has the following characteristics:

• Is hidden

• Has no title

• Is one character wide

• Uses this formula to determine the order of each priority:
@If(Priority="Urgent";"1";Priority="High";"2";

Priority="Medium";"3";"4")

• Is sorted in ascending order

Add a column to the right of the hidden column that:

• Is not hidden

• Has the title “Priority”

• Is 10 characters wide

• Displays the value of the Priority field

• Is not sorted

150 Lotus Domino Release 5.0: A Developer’s Handbook

Exporting and Importing Views
You can export a view to a worksheet, a tabular text file, or a structured text
file.

Exporting to a Worksheet
When you export a view to a worksheet, each document becomes a row in the
worksheet. Each field becomes a column in the worksheet. The original field
contents become cell contents. Column titles become labels in the worksheet.

When you export a view to a new worksheet file, Domino exports the file in
1-2-3 .WK1 format. Although you can specify any extension with the file
name, it’s best to keep the extension .WK1. When you open the exported file
in a newer release of 1-2-3, 1-2-3 automatically converts the file to its new
format and adds the appropriate file extension.

If you change the exported file to .WK2, .WK3, or .WK4 before opening it in
a release of 1-2-3 that uses that extension and then open the file in 1-2-3 and
attempt to add and save attributes, the new copy of the file will be in conflict
with the original, and you won’t be able to save your changes.

Exporting to a Tabular Text File
Tabular text is ASCII text arranged in rows and columns and separated by
space characters. When you export a view to a tabular text file, each
document becomes a text row (line). Each field becomes a text “column,”
separated by space characters. The original field contents become the “cell”
contents. To see the separation between columns in the exported view, use a
monospaced font for the columns in the original view.

The result of a tabular export may not look exactly like the Domino view.
Views use a proportionally spaced font, but exports use a monospaced font.
Export a few documents as a test. You can then, if necessary, adjust the
column width settings in the view before you perform the whole export.

To display or edit the contents of a Domino view in a Domino document,
export the view to a tabular text file. Next, import the tabular text file into a
Domino document.

Exporting to a Structured Text File
Structured text is ASCII text that retains its structure in fields and values.
Exporting a view to structured text creates a file containing the text of all the
documents in the view, minus any rich text attributes.

File Formats You Can Export and Import
No matter what type of data you want to import into a view, it’s best to
import a small test file first. You can quickly determine whether the import is
working correctly and make any necessary corrections before you import the
entire file.

Chapter 5: Views, Folders, and Navigators 151

The following table lists the types of files that you can import from and
export to:

ASCII text that retains its structure in
fields and values; shown as one record
per page and one field per line; limit of
256 bytes per simple text field

.LTR, .CGN, .STRStructured text

ASCII text arranged in rows and
columns; limit of 1536 characters per
record, total

.TAB, .TXT, .PRN, .RPTTabular text

Entire worksheet or named range.WKS, .WK1, .WRK,
.WR1, .WK3, .WK4

Lotus 1-2-3® and
Symphony®
Microsoft Excel*

File descriptionFile extensionsFile type

*To import a Microsoft Excel file, use Excel to save the file as a 1-2-3
worksheet, and then import it.

Exporting a View
Below are the steps to export a view:

1. Select the database and open the view that you want to export.

2. (Optional) Select specific documents to export only a subset of the view.

3. Choose File - Export.

4. Select the file format to which you are exporting.

5. Do one of the following:

• To replace an existing file, select a directory and file name
from the list.

• To create a new file, enter a new file name.

• To append to an existing tabular text file, select a directory and file
name from the list.

6. Click Export.

7. If you selected an existing file, do one of the following:

• To replace the file, click Replace.

• To append to an existing file, click Append.

8. Click Select All Documents unless you selected specific documents in
Step 2.

9. Select Include View Titles to export the view column headings to a
worksheet or tabular text file. (This is optional for 1-2-3 worksheet or
tabular text formats).

152 Lotus Domino Release 5.0: A Developer’s Handbook

10. Change the inter-document delimiter and word-wrap settings if you are
exporting to a structured text file. (Optional for structured text format).

11. Click OK.

Note Choose Form Feed to use a form-feed to separate records in the file, or
choose Character Code to separate the records in the file with the ASCII code
for a delimiter other than the default, ASCII 12 (form-feed). The word wrap
option represents the number of characters at which each line wraps. The
default is 75 characters.

Importing a View
Below are the steps to import a view:

1. Select the database and open the view that will receive the source data.

2. Choose File - Import.

3. Select 123 Worksheet.

4. Select the name of the source file.

5. Click Import.

6. Select a form to use for the imported source data from the Use Form list.

7. Leave Main Document(s) selected in the Import As list, unless you are
creating response documents.

8. Select a Column Format.

9. If you select Format File Defined, enter the name of the .COL file,
including the complete operating system path.

10. To import part of a worksheet, type a range name or range address in
the WKS Range Name box. You cannot import a 3-D range.

11. (Optional) Select Calculate fields on form during document import.

12. Click OK.

After importing, change the column font to a proportional space font, such
as Courier, to improve the display of worksheet data.

Note If you are importing a multiple-sheet worksheet file, Domino imports
only the sheet that was open when the file was last closed, or, if you are
importing a specified range, imports only the range from that sheet.

Chapter 5: Views, Folders, and Navigators 153

Designing a Folder
Folders have the same design elements as views. You design folders in much
the same way as views using the Create - Design - Folder command.

The difference between folders and views is that views always have a
document selection formula that collects and displays documents
automatically. A folder remains empty until users or programs add
documents to the folder.

When you create a folder, its design is automatically based on the design of
the default view of the current database. You can choose to base the folders
design on a different existing view, or to design the folders from scratch.
Designing folders is useful when none of the existing views of a database
show information in the way that you want to see it.

After you create a folder, it appears in the navigation pane until you
delete it.

You can keep a folder personal, or share it with other users of a database. No
one else can read or delete your personal folders. To create personal folders
in a database, you must have at least Reader access to the database. To create
shared folders in a database, you must have at least Editor access, and the
option Create shared folders/views must be enabled for you.

When you create a personal folder, Domino stores it in one of two places:

1. If the Manager of the database has allowed it, your folder is stored in the
database, allowing you to use the folder at different workstations.

Note To see whether a database allows you to store personal folders in
it, select the database, choose File - Database - Access Control, select
your name, and see whether the Create personal folders/views option is
enabled.

2. If the Manager has not given you the option to create personal folders in
the database, Domino stores your folder in your desktop file.

Note If a folder is stored in your desktop file, you can use the folder
only from your workstation, and you can’t use Full text search in the
folder.

154 Lotus Domino Release 5.0: A Developer’s Handbook

Managing Access to Views and Folders
If you only want certain users to see a view or folder, you can create a Read
access list. Users who are excluded from the access list will no longer see the
view or folder on the View menu. A view or folder Read access list is not a
true security measure. Users can create private views or folders that display
the documents shown in your restricted view, unless the documents are
otherwise protected. For greater security, use a Read access list for a form.

You can add users to the Read access list for a view or folder as long as they
already have at least Reader access in the database access control list.

Creating a Read Access List
1. Open the view or folder in Design mode.

2. Choose Design - View Properties or Design - Folder Properties.

3. Click the Key icon (Security tab).

4. Deselect All Readers and Above.

5. Click each user, group, server, or access role that you want to include. A
checkmark appears next to each selected name.

6. Click the Person icon to add person or group names from a Personal
Address Book or the Domino Directory.

7. To remove a name from the list, click the name again to remove the
checkmark.

8. Check Available to public access users if you want documents in this
view or folder available to users with public access Read or Write
privileges in the access control list for this database.

9. Save the view or folder.

Important Do not create a Read access list for the default view of a
database.

Note It is necessary to provide server access to views that are
Read-restricted when a database must be replicated.

Creating a Write Access List
To allow only certain users to update documents in a folder, create a Write
access list for the folder. You can add users to the Write access list for a
folder as long as they already have at least Author access in the database
access control list. To grant access to users, do the following:

1. Select the database and choose View - Design.

2. In the navigation pane, click Design - Folders.

3. Double-click the view or folder.

Chapter 5: Views, Folders, and Navigators 155

4. Choose Design - Folder Properties.

5. Click the Key icon (Security tab).

6. In the Contents can be updated by: section, deselect All authors and
above.

7. Click each user, group, server, or access role that you want to include. A
checkmark appears next to each selected name.

8. Click the Person icon to add person or group names from a Personal
Address Book or the Domino Directory.

9. To remove a name from the list, click the name again to remove the
checkmark.

10. Save the folder.

Note Web users cannot drag documents into folders.

Using Navigators
A database navigator allows the user to easily access views, Domino data, or
other applications. It is like a roadmap that guides the user through the
application using a graphical interface. Most navigators include graphic
buttons or hotspots, which are programmed areas a user clicks to execute an
action. A hotspot can be text, graphics, or a combination thereof.

Note You might also consider using framesets and pages, as they offer
more flexibility when creating applications for both Notes clients and Web
browsers.

Navigator Objects
You create a navigator by combining objects. These might include a
background graphic for display only, and some combination of graphic
buttons and text objects. To create navigator objects, import or paste objects
from another application, or use the drawing tools that are supplied by
Domino. The drawing tools include hotspot tools that you use to define a
clickable area in a navigator.

Navigator Actions
A navigator action determines what happens when users click an object. You
can add actions to all navigator objects except those that were pasted or
imported as graphic backgrounds.

156 Lotus Domino Release 5.0: A Developer’s Handbook

Lotus Domino Designer provides the following simple actions that you can
attach to navigators:

• Open another navigator.

• Open a view.

• Serve as an alias for a folder.

Clicking the object displays the contents of the designated folder in the
view pane. Dragging and dropping a document to the folder object adds
the document to the actual folder.

• Open a database, view, or document link.

• Open a URL.

In addition, a navigator can perform the following functions:

• It can run an @function formula. This requires knowledge of the Notes
macro language, but offers more choices than the simple actions
supplied by Domino. Clicking the object runs the formula associated
with that object.

• It can run a LotusScript program. This is a more complex function to
create, but offers the most flexibility. LotusScript programs can perform
tasks that are not possible with @function formulas, such as the ability to
manipulate a database access control list (ACL). Clicking the object runs
the LotusScript program associated with the object.

Creating a Navigator
In the following section we will create a simple navigator. We will create a
graphic background and add a button. The button will have an action
associated with it.

You can add a navigator to your database in one of three ways:

• Copy an existing navigator from the same database.

• Copy an existing navigator from another database.

• Create a new navigator.

Whichever way you choose, you need Designer access or higher to the
database. In our example, we will create a navigator from scratch.

To create a navigator, do the following:

1. Open the database where you want to create the navigator in Design mode.

2. Go to the navigator pane.

3. Click the New Navigator button. This will bring up the Programmer’s
Pane for navigators.

Chapter 5: Views, Folders, and Navigators 157

Creating a Background
There are two options for creating a background image:

• Copy any available graphic image to the clipboard and use Create -
Graphic Background to paste the graphic in as the background.

• Use the File - Import dialog box to import a graphic as a background to
your navigator.

Tip Whenever possible, use the File - Import method to create a
background because this gives better color fidelity when the graphic is
displayed.

Note You can only have one graphic background for each navigator. You
cannot move the graphic background once it has been pasted. Therefore,
when you create the graphic object, consider the position and size of its
components before you use it as a graphic background.

Tip To remove a graphic background, choose Design - Remove Graphic
Background.

Creating a Graphic Button
Creating a button is done in the same way as creating a background:

1. Use cut and paste or the Import dialog box to build the graphic button.

2. Move the button to the desired position by dragging it.

3. Choose Design - Object Properties to display the InfoBox.

4. Select Lock size and position.

158 Lotus Domino Release 5.0: A Developer’s Handbook

5. Click the HiLite tab.

6. Select Highlight when touched and Highlight when clicked.

7. Close the InfoBox.

Tip You can remove a graphic button by selecting it and pressing
DELETE on your keyboard.

Adding an Action to a Navigator Object
It is very easy to add a simple action to a navigation object. For example, if
you want to add an action that opens a view, follow these steps:

1. Select a graphic button or create a hotspot.

2. In the bottom pane, select Simple action(s).

3. From the Action drop-down list, choose Open a View or Folder.

4. From the drop-down list next to the Action drop-down list, choose a
view. It now looks like this:

5. Save your changes.

Chapter 5: Views, Folders, and Navigators 159

Adding an Action Using @Functions or LotusScript
If you require a more complicated action to be added to a graphic object, you
can create the action by using an @function or a LotusScript program. You
do this in the same way as for Simple Actions, except that you select the
Formula or LotusScript option button in the bottom pane.

Note Make sure that Click is selected in the Event area. This ensures that
the LotusScript program is run when the user clicks the object.

Testing a Navigator
To test a newly designed navigator, follow these steps:

1. Open the new navigator and choose one of the following options:

• Preview in Notes

• Preview in Web Browser

2. Select and click each object to see if the highlighting and the actions
occur as expected.

3. If the test is not satisfactory, deselect the Preview tool to return to Design
mode and make changes as required.

4. Next, test the navigator using some documents. For navigators with
actions that perform multiple steps or complex tasks, split the process
into several smaller tasks and create an action for each task. Test and fix
each small task first. When everything is working correctly, combine the
formulas into one, and then test the navigator again.

Including a Navigator in the View Menu
To display a navigator when a database is opened, follow these steps:

1. Open the database InfoBox.

2. Click the Launch tab.

3. To display the navigator in the navigation pane, choose Open designated
navigator under On Database Open. If you want to display the navigator
in a full-screen window, select Open designated navigator in its own
window.

160 Lotus Domino Release 5.0: A Developer’s Handbook

4. From the Navigator drop-down list, select the navigator that you want
displayed in the view:

5. Close the InfoBox.

When the database is opened, the navigator should launch.

Summary
Views are the entry point to the data stored in a database. When users open
a view, a list of documents in the database is displayed, each row presenting
pieces of information from a document. As such, views give users a logical
and organized overview of information available in Domino databases.

The dynamic nature of views allows application developers to design highly
flexible entries for databases and Web sites, based on user requirements or
access levels.

Navigators are graphical image maps containing several active areas called
hotspots or buttons. These hotspots or buttons can be links to other Domino
objects or Web pages located outside Domino, and can also launch agents to
perform specific tasks on documents stored in Domino databases.

Chapter 5: Views, Folders, and Navigators 161

This chapter describes the new design elements that are available in Domino
R5.0; what they are, and when and how you use them. In summary, the new
elements are:

• Pages

• Framesets

• Outlines

• Resources

After you have read this chapter, you will understand what pages are and
where and when you can use them. You will also learn how to create and
manage the pages.

Before reading this chapter, you should be familiar with the functions
described in Chapter 4: Forms, as that chapter describes how to create and
use various elements in a form. These elements will also work in pages.

This chapter also covers outlines. After you have read this chapter, you will
understand when it is beneficial to use outlines and how you can create,
modify and insert outlines into your form or page.

Pages
Pages are a new type of design element. They are a cross between a standard
form and a “special” form (Help About, Help Using). Pages are a part of the
design collection, which implies that they are inherited from a template
when that template’s design is inherited.

A page can be thought of as a form without fields, but action buttons,
LotusScript objects and events work in the same way as they do on forms.
All rich capabilities (images, attachments, buttons, hotspots, OLE, animated
.GIFs, and so on) are fully functional. Pages are stored in the Design
Collection (Pages) and are named as are other design elements. You can also
use aliases to identify your pages, and use those aliases within your code.

Chapter 6
New R5.0 Design Elements

163

Pages provide application developers with a much improved level of control
over the layout of Web pages on Domino sites. Application developers not
familiar with traditional Notes development, but with experience designing
Web pages, now have a WYSIWYG HTML authoring tool that provides
support for a broad range of browser technologies including HTML 4, image
file formats, Java applets, Active X components and multimedia objects.

Creating a New Page
You can create a new page by choosing Create - Design - Page or by clicking
the New Page button in the Design Collections Page View pane. The new
page looks like this:

Elements that are not enabled in pages are Create Field, Layout Region,
Actions (you can use buttons though), Subforms, and a few Embedded
Elements. Everything else is fully functional.

164 Lotus Domino Release 5.0: A Developer’s Handbook

Specifying Page Properties
The Page InfoBox contains all of the information related to pages.

To look at the page properties, do the following:

1. Click the Properties icon.

2. In the InfoBox displayed, click the triangle in the top middle of the
InfoBox and select Page. An InfoBox is displayed which allows you to
set the properties of the page. There are three tabs:

• Basics

• Background

• Launch

Basics Tab
The Basics tab stores general information about the page.

1. In the Name field, specify a name for the page.

2. The Comment field allows you to enter some informational text about
this page. This comment will show only in the page designer view and,
therefore should contain information relevant to the designer rather than
the user.

Chapter 6: New R5.0 Design Elements 165

Background Tab
The Background tab allows you to specify the background color for the page.
You can also paste in a graphic using the clipboard or import a graphics file.

Note Although Domino supports RGB colors, the quality of the image tends
to be better when the image is imported rather than pasted.

Launch Tab
The Launch tab specifies what happens when the page is loading:

1. The Auto Launch option determines which object is launched first.

2. The Frameset option allows you to select the frameset which will open
when the page is loaded.

3. If you select Frameset, you need to decide in which frame the page is
opened. You can select the current frame by using the Frame drop-down
list.

Page events are just like form events. For more information about events, see
Chapter 4: Forms.

166 Lotus Domino Release 5.0: A Developer’s Handbook

Using Pages
You may be wondering why you would use a page element rather than a
form. On the surface, it seems to have the same utility as a form, but without
the option to create any fields or subforms within it. Why not use forms
instead? The answer is that pages are designed to replace the $$ViewTemplate,
and for that reason they are very useful. Furthermore, you can determine
that when the database is opened, it launches the page first. Therefore, it can
appear as the About This Database form did in earlier Domino releases.
However, using pages you have more options than you had with the About
This Database form, and you can also insert the pages into the framesets.

Pages are intended more to display information rather than to gather
information from the user. They can include views and image links to other
pages or forms.

TeamRoom Database
We will now open the TeamRoom database to see how the pages are used in
that application.

1. Create a new database using the TeamRoom template.

2. Open this database in Design mode.

3. Go to the Pages design collections. The view pane shows all of the pages
in the database.

4. Open the dspOutline page by double-clicking it in the view pane. The
page should look like this:

Chapter 6: New R5.0 Design Elements 167

5. The dspOutline page contains one embedded outline element and
several action hotspots.

Note Although the dspOutline contains only the embedded outline
element and several hotspots, you can use many more elements and
objects in your page.

Launching Pages
There are many options for launching pages, some of which include the
following:

• Inserting the page into a frameset. Select the frame where you want to
put the page, and then click the right mouse button and select Frame
Properties. Select the Named Element in Type option, and from the Kind
options, select Page.

Note You can also select a page from another database.

• Using existing framesets. Open the Pages InfoBox and select the Launch
tab. Select the Frameset option and choose the framesets where you want
to insert the page. Select Frame options and select the page or form that
you want to replace.

• Launching the page from another site. If you want to open the page
from a form using action hotspots, choose Create - Hotspots - Action
Hotspots and enter the following in the Programmer’s Pane:

@URLOpen("http://" + @Subset(@DBName; -1) +
"TeamRoom5.nsf/WelcomePage?OpenPage");

• When database is opened. Open the database InfoBox and select the
Launch tab. Choose Open Designed Navigator in the On Database Open
dialog list. Next, select the page from the Type of Navigator dialog list
and select the current page name in the next field.

Note In the On Web Open options, select the Use Notes Launch option
if you want to open that page for Web users as well as Notes client users.

168 Lotus Domino Release 5.0: A Developer’s Handbook

Framesets
Framesets are a standard technique used to present a multi-pane interface to
the user. Using the Lotus Domino Designer, you can create framesets and
then associate specific pages, views, forms, Java applets, ActiveX
components, or a URL with each frame.

Creating a Frameset
To create a new frameset, do the following:

1. Open the database in Design mode.

2. Select Framesets from the list of design elements.

3. Click the New Frameset button.

A window will be displayed where you can choose your initial
configuration. Select the layout you want and click the OK button.

This will bring up the frameset.

4. Click your right mouse button within the frameset.

Chapter 6: New R5.0 Design Elements 169

5. A window will pop up. Click Frameset Properties to display the
frameset InfoBox. It looks like this:

6. Enter the name, the alias, and a comment for the frameset. After you
have done so, you may close the InfoBox.

7. Adjust the size of the frames to your needs. To do so, click with the left
mouse button on the border line between the frames, hold down the
mouse button, and drag the border line to its new position.

8. Select the frame that you want to start working with and bring up the
InfoBox for this frame. Again, you do this by clicking the right mouse
button within the frame and selecting Frame Properties.

The Info tab of the InfoBox looks like this:

170 Lotus Domino Release 5.0: A Developer’s Handbook

9. Specify a name for the frame. In our example, choose Named Element as
type and select an already defined page. The result looks like this:

You may also specify a URL or a link as the type for this frame. All other
input fields on this tab will change accordingly.

10. Switch to the size tab of the InfoBox.

On this tab you can manually adjust both the width and height of the
frame. The following options are also available:

• Relative. This means that you specify the width and height relative to
the frames in this set. For example, if you have two frames and set the
width for the first one to 1 and the second to 2, the second frame will
be twice as wide as the first.

• Pixel. With this selection you provide an absolute value measured in
pixels.

• Percent. This option allows you to specify the width and height
values as a percentage of the window.

You can also select scrolling settings as well as whether or not the frames
may be resized.

Chapter 6: New R5.0 Design Elements 171

11. Switch to the Border tab of the InfoBox.

12. Here you can specify whether or not the borders around the frames are
visible. If you decide to have the borders displayed, you can specify the
width and color as well.

13. Switch to the Advanced tab of the InfoBox.

14. On this tab you can fine-tune your layout by specifying the spacing
between the frames and the margins within the frame.

Changing the Layout of a Frameset
You can change the layout of the frameset whenever there is a need to do so.
Simply select the frame that you want to be altered, and select the desired
action. Using the buttons shown in the following figure, you can add, delete
and alter the contents of the frame. You can then size the frame by dragging
its border.

172 Lotus Domino Release 5.0: A Developer’s Handbook

Outlines
The Outline Designer enables you to create a hierarchical tree structure of
links and elements for your site, similar to a high level site map.

Because outlines are a new feature and the work area is different than that
for other design elements, we will treat outlines separately in this next
section.

When you create a new outline, the work area looks like this:

The Outline Design work area consists of buttons, the Outline view, and the
work area.

Buttons
1. New Entry: You can add a new entry to your outline. When you click

this button, the new entry InfoBox is displayed:

Chapter 6: New R5.0 Design Elements 173

• You can name your Entry in the Label field. This is shown to users, so
make it as descriptive as possible.

• The Type field allows you to select the Link type. The available
options are Link, Named Element, and URL.

• If you select Link or Named Element as type, a new field appears that
allows you to specify in more detail what you are linking (page, form,
database, and so on). This field gives you a combobox where all the
available elements are shown.

• The Value field is only used for online entries of the URL type. In this
field you type the URL address for this entry or you can use a formula
to compute it dynamically.

• Frame is the target frame in which to display the link. This setting is
optional.

• The Image value indicates which icon to display to the user, to the left
of the label value. Images are stored in the Image Resources part of
the database.

2. Save Outline saves the outlines.

3. Use Outline creates a page and then displays a dialog list where you can
select the current outlines.

4. Generate Default Outline creates a default outline. This outline will be
based on the folders and views in the current database.

Tip It is generally quicker to create a default outline first and then
modify it, rather than creating an outline by adding one entry at a time.

5. Indent Entry enables you to indent the outlines.

6. Outdent Entry enables you to outdent the entries.

Outline Pane
This is the place where you can modify your outlines by dragging and
dropping the entries from one place to another. You can also change the
entry settings and options by opening the Entry InfoBox.

174 Lotus Domino Release 5.0: A Developer’s Handbook

Programmer’s Pane
This contains the Entries Events so that you can dynamically generate their
values at runtime. The available events are:

• Button Label: You can name your Entry.

• Destination: Defines the place where the page, form, HTML-document,
and so on are stored.

• Frame: The frame name that should open.

• Icon: The icon number that you are using in front of the entry.

• Hide When Defines when the entry is displayed.

Creating a New Outline
We are now going to create a new entry which is linked to the page called
WelcomePage in the TeamRoom database. To create a new outline, follow
these steps:

1. Open a database in Design mode.

2. Go to the Outline design view and click the New Outline button.

3. Click the Generate Default Outline button. Designer generates the
outline using the folders and view pane. The outline might look like this:

4. Add a new entry by using the New Entry button.

5. Name the entry, for example, Welcome Page.

Chapter 6: New R5.0 Design Elements 175

6. Link the page by selecting Named Element in the Type field, selecting
Page in the Kind field, and adding the page name, WelcomePage, in the
Value field.

7. When you have inserted all of the required information, the entry
InfoBox should look similar to the one below:

Note You can always come back and modify each of the entries by
opening the InfoBox.

8. Save the outline.

To delete the entry, right-click and select Clear.

Embedded Outline
The Embedded Outline is one of the embedded elements in Domino
Designer, and it allows you to insert the outlines into your form, page, or
subform. After you have inserted the outlines into your page, you don’t need
to reinsert or modify the current page if you make any changes to the
outlines. Domino already has this capability. This can save time when
maintaining your application.

To insert the outlines, do the following:

1. Create a new page or go to the existing page.

2. Move your cursor to the place where you want to insert the outline.

176 Lotus Domino Release 5.0: A Developer’s Handbook

3. Choose Create - Embedded Element - Outline to insert the outline into
the page.

Note You can also insert the outline into a table or nested table.

Embedded Outline InfoBox
The InfoBox looks like this:

Chapter 6: New R5.0 Design Elements 177

Below are some of the features that you can control from this InfoBox:

Information Tab (shown)
Here you can identify your outlines by name. Furthermore, you can select
the style of the outline, the vertical or the horizontal order, and the size. You
can also specify the position of titles, as well as top and sub levels. Web
access allows you to use the Java Applet (which works as it does in the Notes
client) or to use standard HTML.

Note Icons do not work on the Web.

Font Tab
The Font tab allows you to specify the font type, style, color, and size for the
whole outline.

Background Tab
The background tab allows you to specify the background color of the
outline or allows you to add an image as a background.

Alignment Tab
The Alignment tab enables you to customize the spacing and alignment of
the outline entries, images, and background.

You can also specify the tab settings for the fields. You must use this option
if you have multiple fields on the same line and want to keep them in the
same place that you have placed them in the form.

Although you can set the tabs manually, it is better to set them directly in the
form using the ruler.

Note Printing properties do not have any effect on printing from the Web.

178 Lotus Domino Release 5.0: A Developer’s Handbook

Hide When Tab
The Hide When tab looks like this:

Several check boxes are available to hide the embedded outline on
predefined conditions. You can also specify other conditions using an
@function.

In the figure above, the outline control is hidden when the document is
accessed from Notes (4.6 or later).

Resources
The Resources view consists of five different views:

• Images

• Applets

• Shared Fields

• Script Libraries

• Other

The advantage of resources is that you can store the resource elements and
objects in one place, and then reuse them later. For example, when you want
to use the same LotusScript code in several different places, you can create a
new Script Library and put the code in it. You can then call that Script
Library wherever you want.

This enables you to control and manage your applications more easily
because you can store images and applets within resources and then share
these elements, rather than copy and paste the images or applets into several
different locations.

Chapter 6: New R5.0 Design Elements 179

Images
The images resource allows you to store all of the images that you are using
in your database. This is a very useful feature because the database can now
contain all the pictures that it needs and you don’t need to worry about
sending all the images along with the application when you send an
application to another server, for example.

Creating an Image Resource
To create a image resource:

1. Open the database in Design mode.

2. From the Resource design, click the New Image Resource button in the
view pane.

3. Select Insert Image, and click Open.

Note Domino R5.0 supports .GIF, .JPEG, and .BMP graphics files.

When the image is inserted in the view pane, it should look like this:

4. You can specify your Image by opening the InfoBox and entering the
alias name and the comments for that image.

180 Lotus Domino Release 5.0: A Developer’s Handbook

Adding the Image to Your Form
Next, place the image that you have created onto the form.

1. In the database design, go to the Forms design view.

2. Click the New Forms button in the view pane. The new form will be
displayed.

3. Go to Create - Image Resources in the Main menu.

4. The Insert Image Resource window displays:

5. Select the Image that you want to insert. In the example above, it is
Bells.gif. Click OK.

Chapter 6: New R5.0 Design Elements 181

6. The image is now inserted into the form; it will look similar to the one
shown below:

Note Domino now stores .GIF images in their native format, so for
example the above image is actually an animated .GIF. When displayed
in the image selection dialog box and on the page the .GIF is actually
moving.

7. Save the form.

Note You can preview the form by choosing Design - Preview in Notes.

Applets
Java applets that you are using in many places can be added to a Resource.
Then, if you make any changes to the applet later, you only need to copy the
revised applet into one place and those applications that use the applet will
then have access to the new applet.

Shared Fields
The Shared Fields resource contains all the shared fields of the database. If
you want to make any changes in the shared fields, you can easily open the
field by double-clicking the current field name in the design view. For more
information about Shared fields, read Chapter 4: Forms.

182 Lotus Domino Release 5.0: A Developer’s Handbook

Script Libraries
The Script Libraries resource contains all the LotusScript and Java code
segments that you want to use from other scriptable objects. This allows you
to handle and manage your code more easily.

Other
The Other resource contains the icons, Using Database document, About
Database document, database script, and actions. The first four are the same
as in Release 4; actions is a new feature.

Actions
This new feature in R5.0 allows you to store shared actions that you may be
using in many forms and views in one place.

Summary
In this chapter we looked at the new functions in Domino R5.0: pages,
framesets, outlines, and resources, and how to use them in your applications.

Chapter 6: New R5.0 Design Elements 183

This chapter describes Domino agents: what they are, what they do, where to
use them, and how to create them. The chapter also covers Web agents,
WebQueryOpen and WebQuerySave, and how to make agents available for
Web users.

You will also learn how to write agents using LotusScript, how to access CGI
variables, and what access you need in order to run an agent.

About Agents
Agents allow you to automate many tasks within Domino. They are
standalone programs that perform a specific task in a database for the user,
for example, filing documents, changing field values, sending mail
messages, deleting documents, or performing more powerful actions, such
as interacting with external applications. Agents are the most flexible type of
automation because they can be run by users or in the background, and they
are not tied to a specific view or form.

Agents can either be private, created by the user and used only by the user,
or shared, created by a designer and used by anybody who has sufficient
access to the application. Both private and shared agents are design elements
stored in the database for which they are created. They can be run manually
by the user, automatically when certain events occur such as mail arriving or
documents being changed or added to the database, or scheduled to run at
certain intervals. They can contain Notes simple actions, @function formulas,
or a LotusScript or Java program.

Access Control
In the Access Control List (ACL) for the database there is an option to Create
Personal Agents. Since personal agents on server databases take up server
disk space and processing time, the database manager may deselect this
option to prevent users from creating personal agents.

Chapter 7
Agents

185

The following options in the database access control list affect agents:

• To create a shared agent, a user must have Designer access or higher.

• To create a personal non-LotusScript agent that is stored in a shared
database, a user must be assigned the Create Personal Agents authority.

• To create a shared LotusScript or Java agent, a user must be assigned the
Create LotusScript Agents option in the access control list. To store the
agent in a shared database, a user must also be assigned the Create
Personal Agents authority.

When agents run, they automatically check the identity of a Domino user
against any server document or ACL restrictions. Manually run agents run
with the identity of the Domino user; scheduled agents run with the identity
of the person who created or last modified the agent.

Note A Domino administrator can also specify restrictions in the server
document to prevent users from running agents on a server. Users denied
this server access cannot create personal agents on the server regardless of
the ACL setting.

Note Since Web users do not have a Notes ID that identifies them, you
must choose Agent - Agent Properties, click the Design tab, and select For
Web Access: Run Agent as Web User.

Restricted and Unrestricted Agents
In the server document of the Domino Directory you can determine who can
run unrestricted and/or restricted agents. Using unrestricted agents, users
have full access to the server’s system. By using certain LotusScript methods,
properties, and classes in an agent, you can determine that the agent can
only run if the user has the authority to run unrestricted agents. However, be
aware that this does not apply on the Web. Web users can run any agent as
long as the agent is not hidden from Web users.

186 Lotus Domino Release 5.0: A Developer’s Handbook

Creating an Agent
There are a couple of ways to create an agent:

1. Open the database in Design mode, go to the Agents pane, and click
New Agent.

2. Copy an existing agent by opening the database you want to copy from
in Design mode and using cut and paste.

Whichever method you use, the following Agent Builder window is
displayed:

Naming the Agent
The first thing to do is to give the agent a name. A descriptive name is
especially important for an agent that you are designing for users to select
from the Action menu. Also try to keep the first character unique. This is
because, as with forms and views, Domino will use the first unique character
as an accelerator key. Alternatively, you can force Domino to use a letter of
your choice as an accelerator key by putting the underline character in front
of it. It is also good programming practice to provide an alias for the agent.

Click Shared Agent if you want this agent to be used by other users.

Chapter 7: Agents 187

Using the Options button will allow you to set the agent to be available for
public access. Creating agents enabled for public access allows users with No
Access or Depositor access to view and use any manually-run agents.

Caution Once you have saved an agent you cannot change a shared agent
to a private agent or vice versa.

Note Personal agents should not be created in design templates because
their changes cannot be distributed in design replace or refresh procedures.

Scheduling the Agent
Next, select when the agent will run. The following list of options is
available:

• Manually From Actions Menu

Select this option for all user-activated agents or those triggered by
WebQuerySave or WebQueryOpen agents or formulas. It is the only
choice that allows users to see the agent in the Actions menu.

• Manually From Agent List

Use for hiding agents that are run by another agent or that are still being
developed. If the agent is called by another agent (the main agent), the
document selection is ignored. The main agent always determines the
document selection.

Note The name of a hidden agent is surrounded by brackets.

• If New Mail Has Arrived

Use for processing incoming mail to respond to it, forward it, or file it.

• Immediately Before Delivery of New Mail Document

Use this option if you want to run an agent immediately, rather than
wait for the other New Mail Has Arrived trigger, which could have a lag
time.

• If Documents Have Been Created or Modified

Use for workflow tasks where an action is performed based on new or
changed documents.

• If Documents Have Been Pasted

Use if documents are pasted into the database routinely and you want to
modify them as they are being pasted.

• On Schedule Hourly/Daily/Weekly/Monthly/Never

Use to schedule agents to run at regular intervals.

188 Lotus Domino Release 5.0: A Developer’s Handbook

If you have chosen to run the agent on an interval basis you may click
Schedule to bring up a dialog box to schedule the specific run time. The
figure below shows an hourly-scheduled agent:

To set up an interval-scheduled agent:

• Specify Run Once Every in a range between 5 minutes and 11 hours 55
minutes.

• Specify the start and end time of each day.

• Specify the start and end date for the agent to run, and whether it should
run on weekends or not.

• Specify the server on which the agent is to run.

The following options are available:

• Running the agent on the original server
To run the agent on the same server where you create the agent, leave
the default setting in the Run box.

• Running the agent on another server
To run the agent on another server, select a server in the Run list box
or enter a server name.

• Running the agent from any server
If you cannot specify a server in advance, select -Any Server- as the
server name in the Run box. This wildcard entry allows any server to
run the agent. Choosing this may result in replication conflicts if
several servers run the same agent and change documents.

• Allowing users to choose which server runs the agent
If you select Choose When Agent is Enabled, users are prompted to
select a server when they enable the agent. This is useful for
distributing agents in ready-to-use applications.

Chapter 7: Agents 189

Tip If the agent is modifying data in a database, it should run just once on
one server. The changed data is then replicated to the other replicas of the
database.

Selecting Documents to be Processed
This selection is set depending on the option selected for scheduling the
agent. For example, if the agent is scheduled to run if new mail has arrived,
this option is set to Newly Received Mail Documents, and it cannot be
changed.

You can further select which documents are processed by specifying search
criteria. For example, if you want to process only documents in your mail
box which have been sent by a specific person, click the Add Search button
to activate the Search Builder window.

1. From the Condition drop-down box, select By Field.

2. In the Search for documents where field box, select From.

3. Select Contains.

4. Type in the search criteria.

5. Click OK to save your settings.

190 Lotus Domino Release 5.0: A Developer’s Handbook

The following table shows which document options are allowed with which
run options:

All documents in database. All new and
modified documents since last run.

On Schedule Hourly, Daily,
Weekly, Monthly

Pasted documents.If Documents Have Been Pasted

Newly modified documents.If Documents Have Been Created
or Modified

Each incoming mail document.Immediately Before Delivery of
New Mail Document

Newly received mail documents.If New Mail Has Arrived

All documents in database.
All new and modified documents since last run.
All unread documents in view.
All documents in view.
Selected documents.
Run once.

Manually From Agent list

All documents in database.
All new and modified documents since last run.
All unread documents in view.
All documents in view.
Selected documents.
Run once.

Manually From Actions Menu

Document options*Run options

* To narrow down the document collection, specify search conditions. Click
Add Search when the agent is in Design mode.

Specifying What the Agent Should Do
There are five ways of specifying what the agent should do: simple actions,
formulas, LotusScript, imported Java, and Java.

Simple Actions
These are predefined actions which allow you to define a sequence of actions
without requiring any programming knowledge. They are ideal for the end
user who wishes to automate some routine tasks. The simple actions
available are:

• Copy to Database

• Copy to Folder

• Delete from Database

• Mark Document Read

Chapter 7: Agents 191

• Mark Document Unread

• Modify Field

• Modify Fields by Form

• Move to Folder

• Remove from Folder

• Reply to Sender

• Run Agent

• Send Document

• Send Mail Message

• Send Newsletter Summary

• Run @Function Formula

In our previous example, we used the Search Builder to select only those
documents sent by Susan. Now we can easily write a simple action to store
these documents in a folder.

To do so:

1. Return to Agent Builder window.

2. Click the Simple Action(s) option button.

3. Click the Add Action button.

4. In the Action field, choose Move to Folder.

5. Select the folder where you want to move the document.

6. Click OK.

7. Save your changes.

192 Lotus Domino Release 5.0: A Developer’s Handbook

We have now built an agent which stores selected documents in a folder.

Note You can combine simple actions in one agent to build more complex
functions.

Caution Simple Actions refer to the displayed name of design elements.
Therefore, changing the name of such an element will cause the agent not to
work.

Formulas
Formulas can use the full range of @functions available with Domino. You
can write an @function formula that runs by itself or with a simple action.
You cannot combine an @function formula with a LotusScript program.

• To write a stand-alone formula, click Formula in the design pane and
type the formula in the panel.

• To combine a formula with a simple action, click Simple action(s) and
then click Add Action. Choose @Function formula from the Action list
and type the formula in the editing window.

Click Fields & Functions to select an @function or field and paste it into
your formula. Click @Commands to select and paste an @command into
your formula.

Formula-based agents operate on each of the documents in turn and run the
complete formula on a document before proceeding to the next document.

You can apply search criteria through the agent interface to specify which
documents in the database are to be processed. A SELECT statement in the
formula further limits the search. If you do not include a SELECT statement
in the formula, Domino appends a SELECT @All statement. Except for
SELECT @All, a SELECT statement must be the first statement in the
formula to be effective.

For example, if you want to forward documents only if they do not have
attachments, do the following:

1. In the Agent Builder window, click the Formula option.

2. Enter the following formula in the Programmer’s Pane:
@If (@Attachments>0

 @Return(" ");

 @MailSend("Gina"; " "; " "; Subject; _

 "Please handle this" + @Newline; "Body" ; " ")

);

Chapter 7: Agents 193

LotusScript
Agents can also be written in LotusScript.

1. In the Agent Builder window, click the LotusScript radio button.

2. Enter the LotusScript code in the Programmer’s Pane.

Script-based agents run once and must therefore process all documents
selected. You supply the search criteria and the processing order through the
language constructs. Search criteria applied through the agent interface are
effective only through the UnprocessedDocuments property of the
NotesDatabase class. This property contains all documents not yet processed
by the agent or the result of the search specified to the agent builder,
depending upon how you create the agent.

Note Control is always passed to the agent using the Initialize event, so this
is where your program should begin.

Imported Java
To attach a Java program to an agent, first write the program in a Java
development environment. In Domino Designer, click Imported Java and
then click Import Class Files to import the files into the agent.

Java
Use this selection to create your Java written agent using the Programmer’s
Pane of Domino Designer.

Displaying the Agent Pop-up Menu
1. To display the pop-up menu of an agent, click with the right mouse

button on the agent listed in the agents pane. The agent pop-up menu is
shown:

2. From this menu you can:

• Display the agent InfoBox.

• Cut and copy to the clipboard, and paste from the clipboard.

• Clear the agent, which means deleting it.

194 Lotus Domino Release 5.0: A Developer’s Handbook

• Edit the agent, which is the same as double-clicking the agent’s name
in the Agent pane, to display the Agent Builder window.

• Run the agent.

• Test the agent, which tells you how many documents the agent will
process.

• Enable or disable the agent.

• Look at the agents log.

Testing an Agent
Test agents during development and again before copying the agent to a
server database.

Testing an Agent During Development
You can quickly test an agent by simulating a run without affecting
documents.

1. Select the database and go to the Agent pane.

2. Select the agent and choose Actions - Test.

3. Read the Test Run Agent Log, which describes how many documents
would be processed and what action would be taken if the agent were
actually run.

Testing an Agent Before Copying it to a Live Database
For agents that have multiple steps or complex tasks, split the process into
several smaller tasks and create an agent for each. Test and fix each smaller
agent first. When everything is working correctly, combine the agents into
one and then test the agent again.

1. Choose File - Database - New Copy to make a test copy of the database
with documents. For all agents except those that act on mailed
documents, the test copy can be local.

2. If the agent works on mailed documents, the test database must be on a
server, and a Mail-in Database document must exist in the Domino
Directory. Mail a few documents to the test database.

3. If the agent works on pasted documents, paste a few documents into the
database before running the test.

4. If you don’t need to run the agent from a view, select the database and
go to the Agent pane, select the agent you’re testing, and choose Actions
- Run; otherwise, open the database, select the view, and choose Actions
- <Agent Name>.

Chapter 7: Agents 195

5. Make any required changes to the agent to fix any problems that the test
run shows. If necessary, create a new copy of the database to run the
agent again.

6. When the test shows no problems, copy the tested agent to the live
database.

Checking the Agent Log
Every time an agent runs, it writes a report that includes when it ran, how
many documents it ran on, and what actions it took on those documents.
Each new run of the agent writes over the previous log report. Domino
stores the Agent Log with the database.

To view the most recent Agent Log:

1. Select the database and choose View - Agents.

2. Select the agent whose log you want to check and choose Agent - Log.

3. Click OK to close the Log window.

If there is no Log (because the agent has never run), you will see the
message, “This agent has never been run before.”

Debugging Agents
To debug your agents you can use the debugging features of Domino
Designer. However, it is sometimes difficult to debug agents on your
workstation when these agents are expected to run on a server or on the
Web. Use one of the following techniques to debug such agents:

• Include MESSAGEBOX statements to print out statements.

This method is convenient, but can clutter the server log if you have
many statements, or run the agent repeatedly. You either need your own
testing server or permission to populate a server log with debugging
information.

• Use the AgentLog class to write out your statements.

196 Lotus Domino Release 5.0: A Developer’s Handbook

Disabling Scheduled Agents
If you have Designer access or above you can disable any agents, except
manually run agents, in order to prevent servers from running them
automatically. This is useful for debugging a problem with an agent.
Designers can still run disabled agents by selecting an agent at the agent
pane, and choosing Actions - Run. After you re-enable them, scheduled
agents resume their schedule.

To Disable Individual Agents
1. Select the database and go to the Agent pane.

2. Click the enabled agent and choose Actions - Enable. The checkmark will
disappear next to the agent name, indicating that it is disabled.

To enable a disabled agent, click the agent and choose Actions - Enable.

To Disable All Automated Agents in a Database
Disabling all agents is useful for debugging a problem with an agent running
on a server.

1. Select the database and choose File - Database - Properties.

2. Click Disable Background Agents for this database.

Troubleshooting Agents
The Agent Manager runs background agents — scheduled, mail-activated,
and change-activated agents — according to the schedules that you specify
in the agent manager section of the server document in the Domino
Directory. If an agent is not executing correctly, or if you are experiencing
performance difficulties, there are a number of areas that you can examine to
correct problems.

Agent is Not Running
Check the access for the agent to make sure that the agent can run on all
specified databases. For example, if you design an agent to copy documents
from database A to database B, but you don’t have access to database B, the
agent will not be able to execute the task. To check for access problems, view
the Agent Log after the agent runs.

Make sure that the agent is completing its task. If the task exceeds the
amount of time allotted in the “Max LotusScript execution time” setting in
the server document, the Agent Manager terminates the agent before the
task is complete. Increase the allotted time for execution, or rewrite the agent
as several smaller agents.

Chapter 7: Agents 197

Agent Manager is Not Working
Make sure that the Agent Manager is scheduled to run when agents are
scheduled. In the Agent Manager section of a server document in the
Domino Directory, make sure the Start time and End time parameters are set
for Daytime and Nighttime to cover the hours when agents are scheduled to
run. Adjust these parameters as necessary.

Agents are Running Slowly
Check to see if you have too many agents competing for server resources.
Reschedule agents for the nighttime hours, when system demand is lower.
Alternatively, allocate additional system resources to the Agent Manager by
increasing the “Max concurrent agents” setting and the “% of polling
period” setting in the Agent Manager section of the server document. Be
aware that shifting resources to the Agent Manager might slow down other
server processes.

Agent Will Not Run on a Particular Server
Examine the Agent Manager section of the server document in the Domino
Directory to make sure that the user who created the agent has the access to
run the agent on the server. Also, check the access control list for the server
to make sure that the user who creates an agent has access to the server. An
agent inherits access rights from its creator, so an agent cannot run on a
server to which the creator does not have access.

Debugging with NOTES.INI Settings
If you cannot find out why your agent is not running using the procedures
described above, you can turn on the debugging flag for the Agent Manager
in the NOTES.INI file on the server. Add the following line to the server
NOTES.INI:

Debug_AMgr = flag

Flag can be one or a combination of the following:

All of the above information (same as turning on all the flags)*

Verbose mode, showing information about agent loading, scheduling, and
queues

v

Information about Agent Manager schedulings

Agent execution reportsr

Agent memory warningsm

Agent loading reportsl

Information about Agent Manager eventse

Show output agent control parametersc

OutputFlag

198 Lotus Domino Release 5.0: A Developer’s Handbook

The output is written to the console log and the Notes Log.

Caution Debugging affects the server performance.

Additionally, you can turn on agent execution logging. You do this by
adding the following line to NOTES.INI (You can also do this in the server
configuration document in the Domino Directory.)

Log_AgentManager = value

Value can be one of the following:

Show complete success2

Show partial and complete success1

No logging0

OutputValue

This setting gives you only a subset of information compared to what the
Debug_AMgr generates, but it has less of an impact on the performance of
the server.

Debugging at the Server Console
Use the following server commands for troubleshooting the Agent Manager:

• Tell amgr schedule

• Tell amgr status

• Tell amgr debug

Tell amgr schedule
Issuing this command on the server console shows the Agent Manager
schedule of all the agents scheduled to run for the current day. Use it to see if
your agent is waiting in one of the Agent Manager queues.

There are three queues:

• A queue for agents that are eligible to run (E)

• A queue for agents that are scheduled to run (S)

When the time they are scheduled to run arrives, they are moved into
the “Eligible to run” queue.

• A queue for event-triggered agents waiting for their event to occur (V)

Event-triggered agents (new mail and document creation/modification
agents) are queued in the “Event” queue until an event they are waiting
for occurs. When the event occurs, the agents move into the “Scheduled”
queue and then into the “Eligible to run” queue.

Chapter 7: Agents 199

Here is an example:

E S 09:33 AM Today agent_a TEST_R5.NSF

S S 09:54 AM Today agent_b TEST_R5.NSF

V U agent_c TEST_R5.NSF

The first column contains the Agent Manager queue type. The second
column contains the agent trigger type (S means the agent is scheduled, M
represents a new mail-triggered agent, and U represents a new/updated
document-triggered agent). The following columns show the time that the
agent is scheduled to run, the name of the agent, and the database name.

Note It will take up to a minute for an agent to appear in a queue or to
move from one queue to another.

Tell amgr status
The “Tell amgr status” command shows a snapshot of the Agent Manager
status. It gives you information about all settings that are in effect.

Tell amgr debug
Use this command to set or change the Agent Manager debug settings. You
need to use the same debug values as shown above for the Debug_AMgr
setting in the NOTES.INI file.

Agents and the Web
Agents are also used in the Web environment to perform several functions.
In this section, we will concentrate on agents which can be activated by a
user on a Web browser.

As an application developer, you will most likely create two sets of agents in
order to perform the same operations from both a Notes client and from a
Web browser. The main reason for this is the difference in the way in which
an application interacts with the user in the two environments. In Domino,
the applications can interact with users using message boxes or by
prompting information, for example, to change the values in the fields of the
currently open document. On the Web, the only way to show information to
users without using JavaScript is by using HTML to create Web pages. If you
want to change the current document on the Web, you can only do it before
the document is loaded, using the WebQueryOpen event, or before it is
saved, using the WebQuerySave event.

Agents for Web users are most often written using LotusScript or Java, since
simple actions are not available on the Web and @formulas do not allow you
to return information to users.

200 Lotus Domino Release 5.0: A Developer’s Handbook

Running Multiple Instances of an Agent
When Domino is being used as a Web server, add the following line to the
NOTES.INI file on the Domino server.

DominoAsynchronizeAgents=1

This enables an agent to be run by more than one person at the same time.
By default, the Domino server only runs one copy of an agent at a time and
queues other requests.

WebQueryOpen and WebQuerySave Agents
There are two special events in all Domino forms: WebQueryOpen and
WebQuerySave.

WebQueryOpen Event
A WebQueryOpen event runs the agent before Domino converts a document
to HTML and sends it to the browser. Domino ignores any output produced
by the agent in this context.

Examples for using this agent include performing large computations that
aren’t possible with @commands, or collecting statistics about who opened
documents and when.

WebQuerySave Event
A WebQuerySave event runs the agent after field validations and before
Domino saves the document in the database. The agent can run any
operations with document data or modify the document.

An example of a WebQuerySave agent could be an agent which creates
another document in the Notes database but doesn’t save the current
document.

To perform error checking, field validation, and other processing before Web
users open or save documents, create a shared agent that runs manually.
You can then write a formula that uses @Command([ToolsRunMacro]) to
run the agent and attach it to the WebQueryOpen or WebQuerySave form
events. This simulates the LotusScript QueryOpen and QuerySave form
events that are not supported on the Web.

Chapter 7: Agents 201

Using the @URLOpen Command to Call Agents
The @URLOpen function allows you to reference an agent within a formula.
You can associate such a formula with a button to invoke agents from a Web
browser. These agents run when the user clicks the button. The following
example shows how to invoke an agent called WebDelete. Note that the
agent is passed the document’s UNID as a parameter.

UNID:=@Text(@DocumentUniqueID);

@URLOpen("/"+@ReplaceSubstring(@Subset(@DbName; -1);"
";"+")+"/WebDelete?OpenAgent&"+UNID)

Using a LotusScript Agent to Capture CGI Variables
CGI (Common Gateway Interface) is a standard for interfacing external
applications with HTTP servers. When a Web user saves a document or
opens an existing document, the Domino Web server uses CGI variables to
collect information about the user, including the user’s name, the browser,
and the user’s Internet Protocol (IP) address.

You can use the DocumentContext property of the NotesSession class to
capture CGI variables. The property returns a Notes document which
contains all CGI variables that are applicable to the session. You can use
these values to collect or process information for the current session.

The following example demonstrates how to access CGI variables:

Dim session As New NotesSession

Dim doc As NotesDocument

Dim CGIValue As String

To create an instance of the DocumentContext:

Set doc = session.DocumentContext

Once you have access to this object, you can access every CGI variable and
store it in a LotusScript variable. For example:

CGIValue = doc.HTTP_USER_AGENT(0)

CGIValue (string) now has information about the user’s browser.

Examples:

• To find out the Web identity, use:

Set webUserName=docContext.remote_user(0)

• To read the arguments passed, that is, the string followed by the
ampersand (&) that ends some URLs, use:

Set args=docContext.query_String(0)

202 Lotus Domino Release 5.0: A Developer’s Handbook

Creating a Web Page Counter
To keep track of the number of times a Web page is accessed, you may build
a LotusScript agent into a form to monitor hits from Web browsers. To do so,
create a Web page document from the form.

This method is recommended for a single Web page created from a form. If
you create multiple Web page documents from the same form, their counters
are stored together in a single profile document.

Note This tip was provided as a Tip of the Week at the Lotus Developers’
Central Web site (http://www.lotus-developer.com) .

The Agent
Create an agent named Counter. Select Shared and specify that it should be
Run Once and Manually from Agent List. Use the following script:

Sub Initialize

Dim Session As New NotesSession

Dim ProfileDoc As NotesDocument

Dim doc As NotesDocument

Dim num As Double

Dim NumStr As String

Set db = Session.CurrentDatabase

'The following line gets a handle to the current document

Set doc = Session.DocumentContext

'The following line creates a Profile document called 'Domino'
'the first time

'it is executed and from then on modifies the existing 'Domino'
'document

Set ProfileDoc = db.GetProfileDocument("Domino")

NumStr = ProfileDoc.num(0)

If NumStr = "" Then

num = 1

Else

Chapter 7: Agents 203

num = Cdbl(NumStr) + 1

End If

ProfileDoc.num = Cstr(num)

Call profiledoc.save(False,False)

doc.Number = num

End Sub

The Form
1. Create a number field (named Number) to store the counter value. Add

static text to surround the field value, for example:
This page has been accessed [Number] times.

2. Specify the Counter agent as the WebQueryOpen form event.

The Security
Agents are protected by security features in the database access control list
and in the server document in the Domino Directory. To make the Web page
counter agent work, do the following:

1. Write down the name of the person who created or last modified the
agent. This is the agent owner. The name is the Notes ID name, for
example, Mark Hunt/Acme.

2. Add the agent owner’s name to the database access control list and give
at least Editor access.

3. Give access to the agent owner in the server document.

• Open the Domino Directory (NAMES.NSF) and open the
Server\Servers view.

• Find the server document for the server that stores the database and
open the document in edit mode.

• Add the owner’s name to the Run Restricted LotusScript Agents field
in the Agent Manager section.

• If the database design has been signed using the server administration
Sign a Database tool, the signer’s identity must also be added to the
Run Restricted LotusScript Agents field in the server document.

• Close and save the document.

204 Lotus Domino Release 5.0: A Developer’s Handbook

Troubleshooting
If you see the following message:

Error 401 HTTP Web Server: Lotus Notes Exception - You are not
authorized to perform that operation.

there is a problem with the entry in the access control list. Make sure that the
person who created or last modified the agent is listed with at least Editor
access. In addition, make sure that the agent property For Web Access: Run
Agent as Web User is not selected in the Agent InfoBox.

If you see the following message:

Error 500 HTTP Web Server: Lotus Notes Exception - Error
validating user's agent execution access.

there is a problem with the Run Restricted Agents field. Make sure that the
person who created or last modified the agent is listed in that field. In
addition, make sure the agent property For Web Access: Run Agent as Web
User is not selected in the Agent InfoBox.

Using Agents — Advanced Topics
Agents are very useful if you need to change the design of a database. They
can help you to keep the data in the database consistent with the design. For
example, you can use an agent to update all documents which are affected
by a form change. Usually you will create a private agent which selects the
documents affected by the form changes and run it manually.

The following is a list of examples of where agents can be very useful after
changes are made to the design of a database:

Editing and Resaving Documents
To save the step of editing and resaving documents manually, create an
agent that uses the following formula:

@Command([ToolsRefreshAllDocs])

Adding a Field
If you create a new field, insert the new field into existing documents by
creating an agent that uses the following formula:

FIELD New_field_name := value;

where New_field_name is the name of the field, and value is the value you
want the field in these documents to have. The value can be the field default
value, a formula that calculates the value, or a null value (“”) that inserts the
field into the documents, but does not give them any initial value.

Chapter 7: Agents 205

Removing Field Data from All Documents
If you delete a field, existing documents continue to store the obsolete field
and its values. This unnecessary storage can affect disk space. To remove the
obsolete field, create an agent that uses the following formula:

FIELD Field_name := @DeleteField;

After you run the agent, compact the database to reduce its actual file size.

Renaming a Field
If you rename a field, existing documents continue to refer to the old field
name. To update documents to refer to the new name, create an agent that
uses the following formula:

FIELD New_field_name := Old_field_name;

FIELD Old_field_name := @DeleteField;

where New_field_name is the new name for the field, and Old_field_name is
the original name for the field.

Reassigning Documents to Another Form
If users attempt to open documents created with a form that has since been
deleted, they see a message indicating that the form cannot be found. To
prevent users from seeing this message, use these agent options to reassign
existing documents to another form:

1. Under Which document(s) should it act on, select All Documents in
Database and click Add Search.

2. Select By Form Used, select the name of the obsolete form, and click OK.

3. In the design pane, click Formula and enter:
FIELD Form := "Reassigned_form_name";

where Reassigned_form_name is the name of the form that the documents
should use.

Removing the Stored Form from Documents
Selecting the form property Store Form in Documents is useful for
mail-enabled applications in which users need to see a document and don’t
have the original form stored in their mail databases. This form property is
permanently attached to all documents created with the form. To remove the
stored form, remove all internal fields connected with that form by creating
an agent that uses the following formula:

SELECT $TITLE="Old_form_name";

FIELD $TITLE:=@DeleteField;

FIELD $INFO:=@DeleteField;

206 Lotus Domino Release 5.0: A Developer’s Handbook

FIELD $WINDOWTITLE:=@DeleteField;

FIELD $BODY:=@DeleteField;

FIELD $ACTIONS:=@DeleteField;

FIELD FORM:="New_form_name";

This formula removes all internal fields attached to the documents where
Old_form_name is the name of the form used to create the documents. The
last line creates a FORM field where New_form_name is the form that will
display the documents in the future.

After you run the agent, compact the database to reduce its actual file size.

Summary
Agents allow you to automate many tasks within Domino. They can operate
in the background to perform routine tasks automatically, and in the
foreground when called by the user. They can easily be created without
programming knowledge by using Simple Actions, but very complex
algorithms can also be implemented using LotusScript or Java.

On the Web you can also use agents to perform operations before a
document is opened or before it is saved. You are also able to access CGI
variables to capture information about the user.

Chapter 7: Agents 207

As a database designer you can control who has access to an application you
create at every level in the application. Domino provides a variety of security
mechanisms to enable you to do this. This chapter will help you understand
how these mechanisms fit together to secure your application.

The designer of an application and the administrator of the system should
work closely together to define security for an application, because the
choices you make have an impact on system performance.

Even though user authentication and creation are normally administrative
tasks, we will briefly discuss them here as these tasks may have an impact on
defining security for different types of clients and users in your application.
You may also have to integrate with, or even develop, a user registration
application for Web users. For a detailed description of Domino’s system
security and authentication features, please refer to the redbook: The Domino
Defense: Security in Lotus Notes and the Internet, IBM form number SG24-4848,
Lotus part number 12967.

This chapter will help you decide how to:

• Set up an access control list (ACL).

• Create roles to manage access for groups of users.

• Restrict access to database elements.

• Control document access.

• Develop a plan that provides the required security for your data and
appropriate access for each user.

Note This chapter is in part based on the Lotus Education Learning Byte:
Securing Your Application.

Controlling Access to Domino Data

There are a number of ways of approaching access to data in a database; you
can secure certain design elements and information so that that users cannot
access them at all. Alternatively, you can hide certain fields and information
from the user. In this instance, the information is still accessible to the

Chapter 8
Securing Your Application

209

experienced user but it is hidden from the casual user. This is more a
usability issue than a security feature.

By using both the database access control list (ACL) and the encryption
features provided by Domino, you can achieve true security for your
application. Creating access lists, hiding design elements, and using such
features as computed subforms, hide-when features, and collapsible sections
lets you hinder access, are good usability features but they are not true
security features.

Overview of Domino Security Architecture
The Domino environment is made up of several components, all of which
can be secured. If access is allowed to:

• The network, server tests are applied

• The server, database tests are applied

• The database, design factors are tested

• Design elements, encryption is checked

The following figure illustrates the places in the database structure where
access tests are applied. These are the elements you will be concerned with
in securing your application at the database level:

210 Lotus Domino Release 5.0: A Developer’s Handbook

Design Elements for Controlling Access
Setting up the ACL establishes who has access to the database as a whole.
You can further restrict access to database elements by using the following
Domino design elements:

• Access lists for documents, forms, and views

• User roles in the ACL

• Authors and Readers fields in a document

• Hide-when capabilities for fields, actions, sections and outlines

• Controlled access sections

To control user access to Domino data, consider the following situations:

Add encryption to HTTP transactions by activating
Secure Sockets Layer (SSL) at the server. (See the
Domino Administrator’s Help for more
information on SSL.)

Provide an extra layer of
security.

Use @ClientType to enable a computed subform.Display different information
for Web users and Notes users.

Apply encryption techniques.Secure field information.

Use hide-when capabilities for fields, actions, and
sections, or create a controlled-access section.

Control display of database
elements within forms.

Create Authors and Readers fields in a document,
or create a document access list.

Restrict access to specific
documents.

• Add a group containing the names of registered
Web users to the ACL.

• Choose which databases can be accessed by Web
users and what level of access to provide for
each database.

• Authenticate any Web client accessing a Domino
server, database, view, or document.

Control Web user access to
parts of your site.

Create access lists for documents, forms, and views,
and consider creating user roles in the ACL. Start
with “Using the Access Control List to Control
Access to an Application” in this chapter.

Restrict access to database
elements to specific users.

Create Web users and passwords in the Domino
Directory. See also “Planning for Web User Access”
in this chapter.

Define server authentication at
the user level for Web users.

Create an Anonymous entry in the database ACL.
See “Anonymous Access to Databases” in this
chapter.

Allow anonymous users access
to your site.

SolutionSecurity Requirement

Chapter 8: Securing Your Application 211

Using the Access Control List to Control Access to an Application
Every database includes an Access Control List (ACL) which Domino uses to
determine the level of access that users and servers have to that database.
When a user opens a database, Domino classifies the user into an access level
that determines privileges. The access level for a user may vary in different
databases.

The access level assigned to a user determines the tasks that the user can
perform in the database. The access level assigned to a server determines
what information the server can replicate within a particular database.

Only someone with Manager access can create or modify the ACL of a
database located on a server.

This section covers:

• Displaying the ACL

• User and server access levels

Displaying the ACL
The access control list of a database lists all the servers, groups, and users
who have access to the database.

To display the access control list of a database:

Choose File - Database - Access Control and the following panel will be
displayed:

212 Lotus Domino Release 5.0: A Developer’s Handbook

User and Server Access Levels
A database ACL determines the level of access that users, groups, and
servers have. Someone with Manager access to the database assigns levels to
the users, groups, and servers listed in the ACL.

With Domino Release 5.0 there are seven main levels of access that a
database administrator can assign to a person, server, or group:

Replicate all changes to the
database and the ACL.

Perform all operations on the
database, including modifying
ACLs and deleting the database.

Manager

Replicate design changes as well
as all new and changed
documents, but not ACL
changes.

Have Editor access to documents,
except where restrictions exist for
specific documents, and they can
modify the database design, but
they cannot delete the database or
modify the ACL.

Designer

Replicate all new and changed
documents.

Create, read, and edit all
documents unless there are
restrictions on specific documents.

Editor

Replicate new documents.Create and read documents, but
can only edit their own documents
if they are listed in an Authors
field on that document.

Author

Pull changes from the replica but
not send changes to it.

Read documents, but cannot
create, edit, or delete them.

Reader

Not receive changes; not relevant
for servers.

Create documents, but cannot
read, edit, or delete documents,
including those they create.

Depositor

Not access the replica at all.Not access the database at all.No Access

Servers with this access can…Users with this access can…Level

Server access levels are often the cause of databases failing to replicate as
expected. Keep the following points in mind:

• Servers not specified in the ACL have the access level that is assigned to
the -Default- group.

• Listing a server with Manager access in the ACL lets people know which
server has Manager access.

To allow a replica to receive changes made by people with Author access,
assign the server Editor access or higher in the replica ACL.

Chapter 8: Securing Your Application 213

Setting Up and Refining the ACL
When you set up the access control list, you can refine the access for users in
several ways, beyond simply specifying an access level:

• Select User Type to specify Users, Groups, and Servers

When you enter users in the ACL, you can specify whether they are
users, groups, or servers.

• Access Options

Assigning access options allows you to further refine user access.

• User Roles

Roles allow you to define responsibilities in the application and refine
access rights to database elements.

Users, Groups and Servers
A group is a list of users and/or servers which have something in common.
Using a group helps simplify many administration tasks. For example:

• A group of users can be given access to a database in the ACL.

• A group of servers can be designated as permitted to replicate with a
database.

• A group of users can be denied access to a resource.

Note Groups you specify in the ACL must be listed in the Domino
Directory.

There are two default server groups in the ACL:

• LocalDomainServers are servers in the local domain.

• OtherDomainServers are servers in other domains. These are usually
servers in other companies with whom users in your company need to
communicate.

214 Lotus Domino Release 5.0: A Developer’s Handbook

User Types
The ability to specify user types lets you clearly indicate whether a name is
that of a person, server, or group. See the table below for descriptions of the
available user types:

If you leave type as
Unspecified Domino will not
check whether the access is
given to a user or a server.

In the Advanced Access
Control List window, click
Lookup User Types for
“Unspecified Users.” Notes
looks up an unspecified user
type in the Address Book.

Unspecified

Grant the same access to a
group of users and servers.

A group of servers and
individual users.

Mixed Group

Grant the same access to all
users in a group without listing
each user name in the access
control list.

A group of individual users. Person Group

Identify a group of servers that
will host replicas of the
database.

A group of servers. Server Group

Prevent someone from
accessing the database from a
Notes workstation using the
server ID.

A single server; this includes a
server console, and server
workstation.

Server

Control access for an
individual user.

An individual user; this
includes a user on a server
workstation.

Person

Allows you to . . .Assign for this type of userUser type

Assigning User Types for Additional Security
Assigning user types can provide additional security. Specifying names in
the ACL as a person, server, or server group prevents someone from either:

• Creating a group in the Domino Directory with the same name and
adding his or her name to it to access the database through the group
name.

• Accessing the database from a Notes workstation using the server ID.

Note Designating a name as a server or server group is not a foolproof
security method. It is possible to create a Domino add-in program that gains
access to the database from a workstation through the server ID, since the
add-in program behaves like a server.

Chapter 8: Securing Your Application 215

Access Options
When you add users and groups you can specify individual options that
further refine user access. For each ACL entry, you can specify slightly
different options:

Authors and aboveUsers to create and modify
documents with forms
designated as “available for
public access user.”

Write public documents*

Readers and aboveUsers to read documents
created with forms, and use
views and folders, designated
as “available for public access
user.”

Read public documents*

ManagersReaders, Authors, Editors, and
Designers to create LotusScript
and Java agents.

Create LotusScript/
 Java agents

Managers and DesignersEditors to create shared folders
and views.

Create shared
folders/views

Managers and DesignersEditors, Authors, and Readers
to create personal folders and
views in a database on a server.

Create private
folders/views

ManagersDesigners, Editors, Authors, or
Readers to create personal
agents.

Create personal agents

No oneManagers, Designers, Editors,
and Authors to delete
documents. Authors can delete
only documents they created.

Delete documents

Managers, Designers,
Editors, and Depositors

Authors to create documents. Create documents

This option is assigned by
default to…To allow…Enable this option…

* Enabling users to read and write public documents lets you give users with
No Access or Depositor access the ability to access specific forms, views, and
documents without giving them Reader or Author access in the database.
Public documents are useful for calendar applications in which one user
might delegate the ability to read or create appointments on his or her behalf
to another user.

You can specify the availability of a database element for public access at the
bottom of the Security tab in its InfoBox.

Documents created with a form where public access is enabled will have the
field $PublicAccess with a value of “1” added by Domino.

216 Lotus Domino Release 5.0: A Developer’s Handbook

Anonymous Access to Databases
You can handle anonymous users in one of the following two ways:

• Define an anonymous entry in the ACL and specifically define access
privileges for anonymous users.

• Allow anonymous users the same access as the Default entry in the ACL.

Note Any application that will be deployed on the Web should have an
Anonymous entry in the ACL.

If you allow anonymous access to a server, you can still control access to
databases. To control database access for anonymous users, follow these
steps:

1. Add a user with the name Anonymous in the Add User dialog box of the
ACL.

2. Click OK.

3. In the Access drop-down box, select either:

• No Access to prevent access by anonymous users.

• Reader to allow access to an information database.

• Author to allow access to an interactive database.

Caution If the database ACL does not contain an Anonymous entry, all
anonymous users receive the Default access.

To protect the databases from unregistered users you can establish the
Default as No Access. If Default access needs to be higher, create an
Anonymous entry in the database ACL and grant it No Access.

When granting access to unauthenticated Web clients, you will want to grant
anonymous users the least access that still allows them to use the database
effectively. For example, you might grant anonymous users:

• Reader access for an information database

• Author access for an interactive database

Differentiating Default and Anonymous Access
If Anonymous is not listed in the ACL, Domino grants the user access based
on the default database access level. This may be a higher access level than
you want for anonymous users.

Access Level definitions:

• Default: a user not specified in the ACL.

• Anonymous: a user without a valid Notes ID for that organization.

Chapter 8: Securing Your Application 217

Roles in the ACL
When a group you want to add to the ACL does not exist in the Domino
Directory, you may want to create a special group or role for users of the
database. Roles let you define responsibilities in the application and further
define access to database elements.

What is a Role?
A role is a subset of the ACL that is controlled by the database manager. A
role can be used anywhere that a group or user name can be used. Users and
groups are assigned roles to refine access to particular views, forms, sections,
or fields of a database. Instead of assigning access to a design element to
users and groups, you assign access to the role.

Some advantages of using roles are that they:

• Provide a flexible method of restricting document access to a specific set
of users.

• Can be used in formulas.

• Provide group control if you do not have the authority to create groups
in the Domino Directory, or if you want to create groups just for the
database.

• Make it easier for you to modify access when users leave or new users
join.

To use a role in an application, assign roles to users and groups in the ACL.
Include the role in access lists, just as you do with users and groups (or
actually instead of adding specific users and groups).

Adding Roles to the ACL
To add roles to an ACL, follow these steps:

1. Open the database ACL.

2. Click Roles in the Contents pane.

218 Lotus Domino Release 5.0: A Developer’s Handbook

3. Click Add. The Add Role dialog box appears:

4. Enter a role name no longer than 15 characters and click OK. The role
name appears in brackets in the Role list.

Assigning Roles to Users
To assign a role to a user:

1. Open the database ACL.

2. Select the user name in the list of people, servers, and groups.

3. Click one or more role names in the Roles list.

4. Confirm roles by highlighting a user. A checkmark appears next to the
user role or roles.

Enforce Consistent ACL
You can ensure that the ACL of a database remains the same on all replicas.
You do this by selecting the advanced access control list option “Enforce a
consistent Access Control List across all replicas of this database.” Selecting
this option ensures not only that the ACL remains consistent across server
replicas, but also that the ACL is enforced on replicas of the database made
on workstations or laptops; if you do not select this option, users have
Manager access to local replicas of server databases, which allows them to
make changes their access levels on the server replica, although they can’t
replicate such changes back to the server.

Enforcing a consistent access control list as it applies to ACLs on workstation
or laptop replicas is not a security feature. Data in the local replica is not
secure unless you physically secure the workstation or laptop or you encrypt

Chapter 8: Securing Your Application 219

the database using the local security feature. Also, a Domino add-in program
can bypass an ACL enforced on local workstations.

To keep the ACL the same across all server replicas of a database, you must
select this setting on a replica whose server has Manager access to the other
replicas; otherwise replication will fail because the server has inadequate
access to replicate the ACL.

Maximum Internet Name and Password Access
When working with advanced ACL options, you can also specify a
maximum access level for users that have been authenticated with the
internet name and password setting (browser users). This setting overrides
individual settings in the ACL. No browser user can get higher access than
specified for Maximum Internet Name and Password Access.

Check this setting if you are experiencing problems with Web users not
getting the access they have been granted in the ACL.

Changing the ACL Programmatically
You can change the ACL programmatically using these Domino classes.

The classes in the Domino Object Model to use when working with the ACL
are:

• NotesACL

• NotesACLEntry

Refer to the descriptions of the classes in the Domino Designer
documentation for detailed descriptions of the possibilities.

Example
This example illustrates how to obtain all entries in the ACL that are
associated with a given role:

'Declare Variable session as a new Notes session

Dim session As New NotesSession

'Declare db as a Notes Database

Dim db As NotesDatabase

'Declare acl as the Notes Database ACL

Dim acl As NotesACL

'Declare aclentry as ACL Entry type

Dim aclentry As NotesACLEntry

'Declare RoleName as type String

220 Lotus Domino Release 5.0: A Developer’s Handbook

Dim RoleName As String

'Set db to the currently selected database

Set db = session.CurrentDatabase

'Set acl to the ACL of the current database

Set acl = db.ACL

'.....

'Get Rolename from somewhere

RoleName = "[NewsEditor]"

'.....

'.....Here You would check that role exists in ACL using

'.....'Forall RNames In acl.Roles'

'.....

'Set aclentry to the first name in the ACL

Set aclentry = acl.GetFirstEntry

'Continue looping until you run out of names in the ACL

While Not (aclentry Is Nothing)

 If (aclentry.IsRoleEnabled(RoleName) = True) Then

 'If that ACL name is in the selected role

 'Display that name to the user

 Messagebox aclentry.Name

 End If

 'Move to next name in list

 Set aclentry = acl.GetNextEntry(aclentry)

Wend

Chapter 8: Securing Your Application 221

Using Outline Control to Hide Parts of an Application
You can control which parts of an application are visible to the user
depending on whether they are a Notes user, a Web user or on the role the
user has, by using outlines.

For each outline entry, you can use the InfoBox to specify hide from:

• Notes R4.6 or later

• Web browsers

• Depending on a formula (that, for example, checks on assigned roles)

Note Using this method only controls which navigational aid the user is
offered. The underlying objects must also be secured if the user should not
be allowed access to them. For example, if you have a view that only Notes
users should see, then you can hide it from Web users in the outline, but you
must also limit Read access for the view; otherwise Web users can access the
view by specifying its exact URL.

Using Directory Link Files to Control Access to an Application
The System Administrator can control access to all databases in a given
directory by creating a directory link file. A directory link file must be
named in the format xxxxxxxx.dir where xxxxxxxx is the name that will
appear as a directory in the user’s Open Database dialog.

The file is a flat text file where the first line holds the path to the actual
directory holding the databases and the following lines hold the names of
the people and groups that are allowed to access that directory.

Example
A directory link file called projecta.dir has the following content:

d:\projects\projecta

ProjectAMembers

#Admin

CN=Soren Peter Nielsen/OU=CAM/O=Lotus

222 Lotus Domino Release 5.0: A Developer’s Handbook

This means that the databases the Notes user can see in the projecta directory
are physically stored on the server in the d:\projects\projecta directory.
Access to this directory through Domino is allowed only to people in one of
the groups ProjectAMembers and #Admin and the person Soren Peter
Nielsen/CAM/Lotus.

Note The System Administrator can control whether Web browsers are
allowed to access databases using directory links through the NOTES.INI
variable DominoNoDirLinks. A value of zero (0) will allow Web browsers to
access directory links while a value of one (1) prevents it.

Tip The group name for administrators #Admin starts with the character #.
This is to make it one of the last entries in a sorted list. When a user brings
up an address dialog from the Domino Directory the list will not be cluttered
with system groups if they are named so they appear last in the list.

Controlling Access to Views and Forms
Domino provides a number of mechanisms that can refine the ACL in
granting or denying access to individual design elements or data for specific
users. In this section we will discuss:

• Access to views using view read access lists

• Access to forms using form create access lists

Controlling Access to Views
To control which views each user has access to when he or she opens the
database, create a view read access list. The list can contain any users,
groups, servers, and roles that are in the ACL for the database.

Caution By default, when a user opens a database for the first time, the
default view is displayed. Therefore, never restrict access to the default view
for the database. Users will not be able to open the database if they are
restricted from the default view.

Creating a View Access List
To create a view read access list:

1. Open the view in Design mode.

2. Select Design - View Properties to open the InfoBox for the view.

3. Click the Security tab (key icon).

Chapter 8: Securing Your Application 223

4. Deselect All readers and above (the default). The list in the window
displays the contents of the ACL:

5. Click one or more of the users, groups, servers, and roles that you want
to have access to the view. A checkmark appears next to the names you
select.

6. Click the blue person button to add names, roles and groups to the list
from the Address books that you have access to and make sure that they
are added to the ACL.

To deny access to the view, deselect by clicking the name to remove the
checkmark.

Controlling Access to Forms
You can control access to a form in several ways:

1. Exclude the form from the Create menu and make it available to a select
set of users with a View action button.

2. Create a form access list that specifies who can create documents with
the form.

3. Create a form for Public Access users with Read or Create rights in the
ACL.

224 Lotus Domino Release 5.0: A Developer’s Handbook

Making a Form Available to a Select List of Users
This method has two parts:

• Exclude the form from the Create menu.

• Create a View action button that is available to a select set of users.

To prevent a form from appearing on the Create menu:

1. Open the form in Design mode.

2. Select Design - Form Properties to open the InfoBox for the form.

3. On the Information tab, deselect Include in: Menu option.

To create the action button:

1. Open a view that displays the form in Design mode.

2. Create a view action using the formula
@Command([Compose];"formname").

3. Open the Action InfoBox and click the Hide tab.

4. Enter a formula to hide the view from everyone except the users and
groups you specify.

Using a Form Access List
Form access lists override the ACL and allow only those on the list access to
the form or documents created with the form:

A form Create access list allows only those on the list to create documents
using the form.

Chapter 8: Securing Your Application 225

A form read access list allows only those on the list to read documents
created with the form.

To create a form Create access list:

1. Open the form in Design mode.

2. Select Design - Form Properties to open the InfoBox for the form.

3. Click the Security tab (key icon).

4. In the Who can create documents with this form section, deselect All
Authors and Above (the default).

The list in the window displays the contents of the ACL.

5. Click one or more of the users, groups, servers, and roles that you want
to have the ability to create documents with the form. A checkmark
appears next to the names you select.

6. Click the blue person button to add names, roles, and groups to the list
from the Address books that you have access to and check to see that
they are added to the ACL before you make the database available to
users.

To deny access to the form, deselect by clicking the name to remove the
checkmark.

Note A user without access to a restricted form may still be able to create
documents that look like they have been created with that form by using an
agent or by pasting a document from another database.

Creating a Form for Public Access Users
A public access list works with the database ACL to expand user access to
specific views, forms, and documents. Creating forms and views enabled for
public access allows you to provide users with No Access or Depositor
access the ability to view specific documents, forms, and folders without
giving them Reader access to the entire database. Users who have this access
level in the database ACL will see only documents, folders, and views
specified as available for public access in the form/folder/view InfoBox.

Public documents are useful for calendar applications where one user might
delegate the ability to read or create appointments on his or her behalf to
another user.

To create a form for public access:

1. Choose Design - Form Properties.

2. Click the Security tab.

3. Select Available to Public Access users.

4. Create a field and open its InfoBox.

226 Lotus Domino Release 5.0: A Developer’s Handbook

5. In the Name field, enter $PublicAccess.

6. In the Type field, select Text and Computed when Composed.

7. In the Design pane, enter “1” as the default value for the field and click
the green button to accept the value.

8. To hide this field from users, select the Hide tab and specify hide-when
conditions in the Field InfoBox.

9. Save the form.

To sum it up: You must both specify that the form is for public access using
the InfoBox AND add a hidden computed field called $PublicAccess with a
value of “1”.

Note The views the Public users will use must also be marked for Public
Access. This is done using the View InfoBox.

Preventing Printing, Forwarding, and Copying of Documents
You can discourage users from printing, forwarding, or copying documents
created with a form. This feature helps to prevent accidental distribution of
confidential information, but it is not a true security feature since the settings
can be manipulated with the appropriate Design and Document access rights
or circumvented by using a screen capture program.

1. Open the form in Design mode.

2. Choose Design - Form Properties.

3. Click the Security tab (the key icon).

4. Select Disable printing/forwarding/copying to clipboard.

5. Close and save the form.

Controlling Access to Documents
Individual documents can contain sensitive information. Domino security
provides several mechanisms that can restrict access to a document. You can
control both Read and Editor access to documents:

• Restrict Read access to documents:

• Create a read access list for all documents created with a form.

• Use a Readers field.

• Restrict Editor access to documents:

• To those named in the Authors field.

• Use a Controlled Access section.

Chapter 8: Securing Your Application 227

Read Access
If you want to control read access at the document level you can you can do
it for all documents created with a specific form or you can do it for each
document. In the following sections we will describe:

• Controlling Read access to documents based on the form used to create
them

• Controlling Read access to individual documents using a Readers field.

Read Access List for a Form
A read access list for a form refines the ACL by allowing only those named
in the list to read documents created with the form.

The $Readers Field
When you create a read access list for a form, Domino adds the internal field
$Readers to the form. The value of the field is the form read access list. Each
document that users create with the form contains the $Readers field list of
readers. If there is no read access list for the form, the documents do not
have a $Readers field.

Note The Author or an Editor of a document can change the read access list
of a document by going to the document InfoBox and changing the selection
in the read access list of the Security tab.

Creating a Form Read Access List
To create a read access list for a form:

1. Open the form in Design mode.

2. Select Design - Form Properties to open the InfoBox for the form.

3. Click the Security tab (key icon).

4. Disable the default option (All readers and above). The list in the
window displays the contents of the ACL:

5. Select specific users, groups, servers, and roles to which you want to
give Read access for documents created with the form. A checkmark
appears next to the names you select.

228 Lotus Domino Release 5.0: A Developer’s Handbook

6. Click the blue person button to add names, roles, and groups to the list
from the Address books that you have access to and check that they are
added to the ACL before you make the database available to users.

7. To deny Read access for documents created with the form, click a name
to remove the checkmark.

Note Creating a form read access list lets you assign read access to a
specified set of users, groups, and roles for all documents created with that
form. However, if you need to be able to assign readers rights dynamically,
you must use a Readers field as follows.

Readers Field
A Readers field is a field data type that restricts readership for the document
to those users and servers that are listed in the field. There are two ways to
create a Readers field in a document:

• The Designer places a field with the Readers Data Type on a form.

• The Author or an Editor of the document opens the document properties
and sets the Read access in the security tab. This automatically creates a
$Readers field in the document.

Readers fields have the following characteristics:

• Readers fields are an excellent means of restricting replication, as only
the documents for which a user is listed in the readers field will be
replicated.

• If a document contains multiple Readers fields, all entries from all
Readers fields have read access to the document.

• Readers fields restrict reader access to individual documents only; access
to each document depends on the contents of its Readers field.

• Editable Readers fields allow authors and editors to enter names of
authorized readers.

Caution If you allow users to enter names of authorized readers, you
should also have a separate, hidden, computed Readers field that contains
the names of any servers that should replicate the document. Without the
server names in a Readers field, the document will not be replicated. It is
recommended to add a role for replicating servers to a Readers field and
then assign the relevant servers to that role in the ACL.

Creating a Readers Field
To create a Readers field:

1. Add a field to a form.

2. Select Readers as the field data type.

Chapter 8: Securing Your Application 229

3. Specify readers by using one of the following methods:

• Enter user names, roles, or groups directly.

• Use a formula to compute user names, roles, or groups.

• Make the field editable so Authors and Editors can select and change
readers.

Note Before Domino R5.0, even though the reader was not allowed to see a
certain document in a categorized view, the category for that document
could still be seen, so you had to take care not to display sensitive
information in the categories. Using Domino R5.0 the reader will only see the
categories in a view for documents that he or she is allowed to read. This
allows you to include sensitive information (for example, social security
numbers) in the document category.

Editor Access

Authors Field
An Authors field is a Notes reserved field that lets you give users Editor
access to their documents when they have Author access to the database.

An Authors field:

• Works only in a database located on a server, or on a local replica when
the Enforce a Consistent ACL option has been selected.

• Refines the ACL but does not change it.

To allow users with Author access to edit documents they create, you must
include them in the documents’ Authors field.

Users with Editor access can edit a document even if they are not in the
Authors field. (Use Readers fields to prevent users with Editor access from
reading the document, since if Editors cannot read the document, they
cannot edit it.)

Users with No Access, Depositor access or Reader access cannot edit the
document even if they are listed in the Authors field.

If you add only one Authors field to a document and it contains a null value,
then only an Editor or above can edit the document.

230 Lotus Domino Release 5.0: A Developer’s Handbook

Creating an Authors Field
To create an Authors field:

1. Add a field to the form.

2. Select Authors as the field data type.

3. Specify the authors using one of the following methods:

• Entering user names, roles, or groups.

• Using a formula to compute user names, roles, or groups.

• Making the field editable so that users with author or editor authority
can select and change authors themselves.

Combining Readers and Authors Fields
Use this table as a quick reference to determine how Readers and Authors
fields can protect your document:

Assume that Jane Brown and Roberto Sanchez both have Author access in
the ACL and that there is no form read access list.

Roberto Sanchez Jane Brown and
Roberto Sanchez

Roberto Sanchez Jane Brown

No oneJane Brown NoneJane Brown

Roberto Sanchez and
everyone with ACL
Editor access and
above

Everyone with ACL
Reader access or
above and Roberto
Sanchez

Roberto SanchezNone

Everyone with ACL
Editor access and
above

Everyone with ACL
Reader access

NoneNone

Who can editWho can readAuthors fieldReaders field

Note Do not hardcode group or people names in Readers and Authors
fields as this will make maintenance harder. Use roles instead as this will
allow the database Manager to assign the desired access to different groups
and people by assigning the right role to them in the ACL.

Caution When programming with the Domino classes you cannot use the
extended class method to assign values for Readers and Authors fields as
you can when working in the formula language. Suppose that you have a

Chapter 8: Securing Your Application 231

Readers field in your document called DocumentReaders and that you want
to assign the value “Cecilie Vibe/Asgård” to this document. Using the
formula language you can do as follows:
FIELD DocumentReaders := "Cecilie Vibe/Asgård"

You might also expect to be able to do it in a similar way using the Domino
classes by treating the item name “DocumentReaders” as a property of a
NotesDocument object (assigned to the variable ‘doc’ in this example):

...

doc.DocumentReaders = "Cecilie Vibe/Asgård"

...

This will NOT work because it changes the type of the DocumentReaders
field to Text thereby removing the read protection from the document. When
working with Readers and Authors fields in the Domino classes you must
use the NotesItem class as follows:

...
Dim newValues(1 To 2) As String

newValues(1) = "Cecilie Vibe/Asgård"

newValues(2) = "[ReplicatingServers]"

Dim authorsItem As New NotesItem(doc, "DocumentReaders", _

newValues, READERS)

...

Note that the role [ReplicatingServers] was also added to the Readers field in
the last example. Documents protected by Readers fields should always
include read access to a role that can be assigned in the ACL to the servers
that need to replicate the database.

Field Editor Access Security Option
In a database where some users have Editor access while others only have
Author access you can combine the use of Authors fields with the individual
field security option Must have at least Editor access to use. Thus, even though
you are giving users with Author rights in the ACL access to a document, by
using an Authors field you can hinder them in editing certain fields by using the
Must have at least Editor access to use field security option.

Controlled Access Sections
In addition to having the same properties as the standard access, controlled
access sections also have a separate list of allowable editors. To users with
Editor access, fields behave as normal editable fields. To users who are not
listed as Editors of the section, the fields are read-only.

232 Lotus Domino Release 5.0: A Developer’s Handbook

In addition to limiting Editor access to the fields within a section, sections
also provide a means of attaching multiple signatures to a document (up to
one signature per section). This is a useful feature for workflow type
applications.

Note Sections are not to be used as a security feature. An access-controlled
section does not physically protect data because a user can modify the
section through a different form. To make a section truly secure, encrypted
fields must be used within the section. Sections should be used when
documents require multiple signatures validating the Composer or Editor of
the data.

Use of Hide-When Formulas
You can control whether an action button, a paragraph or a cell in a table is
to be shown to a user by a hide-when formula. Select the object that you
want to hide and display its InfoBox. Click the Hide When tab and select
Hide Object if Formula is True. Then enter a formula for when the selected
object should be hidden.

See the Using @UserRoles section later in this chapter for examples of
hide-when formulas.

Note Hide-when formulas are not a true security feature on the Notes client
as all hidden fields in a document can be seen through the document
InfoBox. It is also not secure for a Web client if Generate HTML for all fields
is selected in the Form Properties box.

Using Encryption for Field Security
Encryption allows you to secure information at the field level. You can
encrypt the contents of any field so that only readers who have the
encryption key can access the message or field.

Note The database Managers can encrypt an entire database.

Users who need to:

• Create and save documents with a form must have at least one of the
encryption keys you selected in the default encryption keys list.

• Read the encrypted fields must also have at least one of the encryption
keys used to encrypt the fields.

Caution Encryption does not work with Web browser users because the
encryption key is held in the Notes ID. Do not rely on encrypted fields to
provide security if Web users are authorized to read documents.

How Encryption Works for Fields
Encryption prevents unauthorized access to critical data in selected fields
and is enabled using encryption keys. The System Administrator distributes

Chapter 8: Securing Your Application 233

the encryption keys to authorized users when deploying the application by
mailing the key or giving it to users in a file. When users receive an
encryption key, they must merge it with their user ID files.

Encryption Methods
You need to choose an encryption method and design for it. There are three
ways you can apply encryption:

� Automatically: You can design a form to automatically encrypt all
encryptable fields whenever someone saves a document composed with
that form.

� Manually: Authors and Editors can encrypt the document by selecting
an encryption key in the document InfoBox.

� Manually or automatically: You can create a field that generates a list of
encryption keys from which the Author or Editor can choose a key, or
you create a field that contains a formula that chooses the key.

Creating an Encryption Key
A document can be encrypted only if it contains at least one field designated
as encryptable.

To encrypt a document:

1. Create an encryption key.

2. Enable encryption for a field.

To create an encryption key:

1. Choose File - Tools - User ID.

2. Click the Encryption icon.

3. Click New.

4. Enter a name that describes the purpose of the key.

5. (Optional) Enter a comment. Include the names of the database, forms,
and fields that use the encryption key in case you need the information
later.

6. Click North American if users are going to use the key only in Canada or
the U.S. Click International if users are going to use the key in other
countries.

7. Click OK.

Protect the encryption key by specifying a password for the key when you
export it. In this way, only those who know the password can import the key
into their user IDs. Additionally, you can specify that a user who receives the
encryption key cannot give it to another user.

234 Lotus Domino Release 5.0: A Developer’s Handbook

Enabling Encryption for a Field
You can enable encryption for a field manually or automatically. To allow
Editors and Authors to specify keys to encrypt their documents, you need to
manually enable encryption on the field.

To manually enable encryption on a field:

1. Create a field in a form.

2. Open the fieldInfoBox.

3. Click the Options tab.

4. Select Security Options: Enable Encryption for this field.

The Editor or Author must then specify which encryption key to use on the
Key tab on the InfoBox for the document.

To enable automatic field encryption:

1. In the form InfoBox, click the Key tab.

2. From the Default Encryption Keys list, select one or more encryption
keys in your ID. If you select more than one encryption key, all the
encryptable fields will be encrypted with all the keys.

Authentication on the Web

HTTP Basic Authentication
The communications protocol used by the World Wide Web is the Hypertext
Transfer Protocol (HTTP). HTTP includes a simple user ID and password-
based authentication scheme known as basic authentication. The
implementation of basic authentication is server-specific, but in general
they all use it for two purposes:

• As a mechanism to identify which user is accessing the server

• To limit users to accessing specific pages (identified as Uniform
Resource Locators, URLs).

How Basic Authentication Works
Basic authentication uses a challenge mechanism to prompt users to
authenticate themselves. The user ID and password block is constructed by
creating a string of the form: userID:password and then encoding it using the
base64 algorithm.

You may wonder, why you are not repeatedly prompted for a password
every time you access a new restricted page. The reason is that the browser
caches the user ID, password, server name, and realm name in memory. In

Chapter 8: Securing Your Application 235

fact, most browsers go one stage further than this and send a user ID and
password for any URL that is likely to need it.

Is Basic Authentication Secure?
There are two obvious loopholes in HTTP basic authentication:

The user ID and password are included in the packet header, which means
that they can be captured by anyone with a network sniffer or trace tool at
any place in the session path.

The user ID and password are cached in the browser, so if you leave the
machine unattended anyone can use your ID to access restricted information.

The second loophole is no different from any other situation where a
machine is left unattended. The solution is one of user education: always
lock the screen when you leave your desk. Note that the caching is in
memory, so the user information is lost once the Web browser has been shut
down.

The first loophole is more significant. The user ID and password are not
encrypted when they are placed in the packet header, but instead are
encoded with base64. Base64 is an algorithm that forms part of the
Multipurpose Internet Mail Extensions (MIME) protocol. It is a mechanism
that turns any bit stream into printable ASCII characters. (It is described in
RFC1521.) In fact, the objective of base64 is not for masking data at all, but to
provide a method to send binary data through a mail gateway that can only
handle character data.

The result of this is that by capturing the Authorization: Basic header from
an HTTP request, an attacker can easily extract the user ID and password.

How serious is this exposure? Within a corporate network it may not be a
big problem. In fact, base64 offers protection of user IDs and passwords that
is superior to many older protocols that send them as clear text. On the
Internet it is a different story. Here you have to assume that someone,
somewhere is tracing everything you send. Clearly HTTP basic
authentication should not be used as the sole method of protection for any
critical resource.

You can make basic authentication secure by providing an encrypted
connection for it to operate in. SSL is a good example of a protocol that
encapsulates HTTP data in this way.

Secure Sockets Layer (SSL)
The SSL protocol was originally created by Netscape Inc., but now it is
implemented in World Wide Web browsers and servers from many vendors.
SSL makes use of a number of cryptographic techniques, such as public key

236 Lotus Domino Release 5.0: A Developer’s Handbook

and symmetric key encryption, digital signatures and public key certificates.
SSL has two main objectives:

1. To ensure confidentiality, by encrypting the data that a client and server
send.

2. To provide authentication of the session partners, using RSA public key
methods. Most current implementations only require the server to be
authenticated in this way, although the protocol does allow for client
authentication.

There are two parts to SSL: The handshake, in which the session partners
introduce themselves and negotiate session characteristics, and the record
protocol, in which the session data is exchanged in an encrypted form.

SSL and Certifying Authorities
Authentication in SSL depends on the client being able to trust the server’s
public key certificate. A certificate links the description of the owner of a key
pair to the public part of the key. The validity of a certificate is guaranteed
by the fact that it is signed by some trusted third party, the certifying
authority (CA). But how does a certifying authority become trusted? In the
case of an SSL-capable browser, the certificates of trusted authorities are
kept in a key database, sometimes called a key ring file. The list of top-level
authorities, for example VeriSign, is pre-installed when you get the browser.

This approach has the benefit of being very simple to set up; a browser can
authenticate any server that obtains a public key certificate from one of the
CAs in the list, without any configuration or communication with the CA
required.

SSL Client Authentication
Both client and server use digital signatures to identify themselves and those
signatures use public keys that are validated by the existence of a shared
hierarchy of certificate authorities. You may think that SSL could apply a
similar approach to allow Web browsers to authenticate themselves, simply
by having the client implement a mirror image of the server authentication
process. In fact, this is exactly what the SSL protocol specifies, by adding to
the handshake a server challenge that the client must encrypt using its
private key.

Unfortunately life is not that simple. Notes can support a symmetrical
authentication scheme because you have control over the CA hierarchy and
therefore you can ensure a region of shared trust. On the Web you do not
have that luxury. The monolithic certification scheme used by servers is not
flexible enough to support the large number of certificates that client
authentication would require.

Chapter 8: Securing Your Application 237

Domino and SSL
Domino Release 4.5 added support for Domino to obtain a certificate from
an external certificate authority to provide for Domino server authentication
and session encryption (SSL V2).

The Domino 4.6 server added support for Internet client authentication (SSL
V3), using client certificates obtained from an external certificate authority.
The client certificate had to be registered in the user’s person record in the
Domino Name and Address book. Domino 4.6 also added support for
Domino to be a certificate authority to issue X.509 certificates for servers
(although the Domino CA could not yet issue client certificates).

The X509 certificate is a standard certificate format for the Internet.
Certificates verify the user’s identity and bind the public key to the user’s
name. X.509 certificates are used on the Internet/intranet for authentication
and encrypted sessions (SSL), and encrypted mail and digital signatures
(S/MIME).

Domino Release 5.0 adds SSL 3 Client Authentication and the ability to
create X509 certificates that can be issued to Notes clients.

Previous Notes clients used their own internal certificates (similar concept to
X.509, but different format) and did not support X.509 certificates. The Notes
R 5.0 client will have the ability to request a certificate from any certificate
authority, including a Domino certificate authority, and store the X.509
certificate in the Notes ID file. To obtain an X.509 certificate from a Domino
CA, Notes users will use the Domino CA Web site (CA application) just as a
browser user does today. The X.509 certificate can be used for encryption
and digital signatures between Notes clients and Internet clients using
S/MIME and for access to secure web sites using SSL.

When to Use Internet Security
There are three methods of Internet security that can be used, Basic
Authentication, SSL Server Authentication, and SSL Client Authentication
with X509 certificates. The table below describes when, typically, to use each
of these levels of security in your applications:

Continued

In an Internet application where the risk of outside
attack is greater and you wish to protect the information
and data on your Web server to a greater extent.

SSL Server Authentication

In a closed network application such as a company
intranet where the level of risk from outside attack is
low.

Basic Authentication

When to use itSecurity Feature

238 Lotus Domino Release 5.0: A Developer’s Handbook

When security is at a premium and you are exposed to
potential attacks from the Internet.

SSL Client Authentication
with X509 certificates

When to use itSecurity Feature

Defining Web Users
You may register new Web users from scratch, or let existing Notes users
have access to the Domino Web server. To create a new Web user follow
these steps:

1. Open the Domino Directory and select the Person view.

2. Select the Add Person action button to display the Person document.

3. Enter the required information. The User Name and Internet Password
fields are the only fields used for Domino Web authentication. The other
fields are optional with the exception of the Last Name field, a required
field without which the form cannot be saved.

4. The following figure shows a Person document being created:

For more information on Internet Security, see the IBM redbook; The Domino
Defense: Security in Lotus Notes and the Internet, part number SG24-4848 (Lotus
part number 12967).

Chapter 8: Securing Your Application 239

Programming Considerations
Domino provides several @functions that help you control application
behavior based on the user, or on the client type. We will discuss the
following functions:

• @UserRoles: returns a list of roles for the current user.

• @UserName: returns the user name or server name.

• @ClientType: returns a text string to differentiate Notes and Web clients.

• @UserNamesList: returns a text list containing the current user name,
any group names, and any roles.

Using @UserRoles
Use @UserRoles in formulas to either:

• Determine what to do for a particular set of users, without needing to
use the user names in the code.

• Direct one set of users to one page, and another set of users to another
page when the user clicks a button.

The @UserRoles function has no arguments:

@UserRoles

and returns a text list whose value is the role or roles of the current user. You
can add code to perform an action based on the returned value.

Note @UserRoles only works on a server-based database unless the Enforce
a Consistent ACL option is selected in the Advanced section of the ACL
settings.

Examples
To display an action only to people in the NewsEditor role, enter the
following hide-when formula for the action:

!@IsMember("[NewsEditor]"; @UserRoles)

To hide a database element from Web users who have not registered in the
Domino Directory, create a Registered role in the ACL and enter the
following formula on the element’s Hide When tab:

!@IsMember("[Registered]" ; @UserRoles)

Using @UserName
@UserName returns the current user name. Using @UserName allows you to
make the current user name available to formulas. You can use it to:

240 Lotus Domino Release 5.0: A Developer’s Handbook

• Restrict the Edit action in documents created with a particular form
based on whether @UserName is equal to the author of the document.

• Hide portions of documents in hide-when formulas based on the user
name.

Example
The following view selection formula selects only documents created by the
current user to display in a private view:

SELECT @UserName=Author

@UserName has been extended to take a new parameter, index, which returns
the user name, alternate user name, or server name indicated by the parameter.

Alternate user name is new in Domino R5.0. It allows the administrator to
specify two names when creating a user: their real name and their simplified
name, so that people in other countries, with other keyboard setups, will be
able to type the name anyway.

Using @ClientType
@ClientType returns a text string to differentiate Notes and Web clients. Use
@ClientType in formulas for which the outcome is different depending on
client type.

Example
Used in a computed subform formula, the following formula inserts the
subform “WebHead” if the form is to be displayed on the Web, and the
subform “NotesHead” if the form is to be displayed on a Notes client:

@If(@ClientType = "Web"; "WebHead"; "NotesHead")

Using @UserNameList
@UserNamesList returns a text list containing: the current user name, any
group names and any roles. It also works on local databases when the
Enforce Consistent ACL option is selected. Returns “” for a local database
where Enforce ... is not in effect.

@UserNameList will allow you to combine the functionality of @UserRoles
and @UserName.

Example
@If(@IsMember("NewsEditors"; @NamesList); "Editor Head";
"Generic Head")

Note Unlike @UserRoles, this function does not append “$$WebClient” to
the list. This is because @ClientType is now available for this purpose, so
@UserRoles overloading is no longer necessary.

Chapter 8: Securing Your Application 241

Password Field
A new field type called Password has been introduced in Domino R5.0. You
can create a Password field that displays only asterisks when a value is
entered into the field. This field allows users to enter a password in privacy.

However, you must either make sure that the password is passed on and not
saved in the document or protect it in the document by using a Readers field
or an encrypted field to avoid other users seeing the password through the
InfoBox for the document.

Controlling if Users Paste Documents into Database
You must also consider whether users should be allowed to paste documents
into your appplication database. If this is not controlled, users may be able to
compose a document in another database in a way not allowed in your
application and then paste the document into your application database.

To control the pasting of documents, create an Agent that runs when
documents are pasted into the database and then apply the appropriate
controls in that agent.

Hiding the Design of a Database
The developer can protect the design of a database by hiding it. Hiding the
design of a database will not hide the data in that database.

Consider carefully before hiding the design of a database. It may be more
difficult for the System Administrator to maintain while it is deployed. For
example if you hide the design of a database the Agents view is also hidden
and the System Administrator cannot enable or disable server agents unless
you have added action buttons or similar functions.

Other Security Options and Considerations

Using Signatures for Security
Domino checks the signatures in design elements for two reasons:

• To allow execution of the application in the Notes client.

Signers allowed to execute in the Notes client are listed in the client
Execution Control List (ECL).

• To allow execution of server-based agents in the application.

Signers allowed to execute agents on the server are listed in the Security
(Agent Restrictions) section of the server document in the Domino
Directory.

242 Lotus Domino Release 5.0: A Developer’s Handbook

To make management of Execution Control Lists and the Security section of
the server document easier, it is recommended that you create a common ID
for your development organization that is used to sign all deliverables before
handing them over to the System Administrator for deployment.

The following sections will explain:

• Execution Control Lists

• Server-based security for agents, Java and Javascript

• Signing a database

• Signing an applet

Execution Control Lists
Execution Control Lists (ECL) have stemmed from the concern that a Notes
user does not have much control over what a Notes application is doing to
their document, database, or system.

ECLs are a means by which the Notes user can now specify what level of
access an executing formula or LotusScript program created by another
person can have to their system.

By default, no scripts or formulas, whether signed or unsigned, can execute
on your workstation without displaying a warning message.

ECLs are stored on a user’s workstation. To work with ECLs choose File -
Preferences - Notes Preferences. Click the Security Options button. The
Workstation Security: Execution Control List dialog box is displayed:

Chapter 8: Securing Your Application 243

The dialog is split into two areas. These are the developers’ signatures and
the levels of access that documents signed by these developers are granted
on your workstation.

In the upper right corner you specify whether the level of access you specify
relates to code in Domino databases (Workstation) or to Java applets
executing in the Notes client Web browser.

For example, suppose you are trying to create a document from a design that
has been signed by the ID Domino Development/Asgård. You have
specified in your ECL list that you do not want to give this ID access to your
environment variables.

When you open up the document and the program tries to perform an
@Environment command, a dialog box will appear telling you that the
system is trying to access an environment variable when it does not have the
authority to do so. If you want to allow the command to continue you can do
so. You can either allow it to run this one time only, or you have the ability
to change the ECL permanently to give Domino Development/Asgård the
ability to access any of your environment variables in the future.

Note By default every template that comes from Lotus is signed by Lotus
Notes Template Development which is given full access to your system.

Central Maintenance of the ECL
When new Notes clients are installed a default ECL is pulled from the
server. The System Administrator also has the option of not allowing users
to modify their ECL.

If the System Administrator updates the default ECL the new settings can be
distributed to existing clients by mailing them a memo that includes a button
that executes the function @RefreshECL and asks them to refresh their ECL.

A complete list of LotusScript and @functions that are affected by the ECL
can be found in the Notes Help database.

Agent, Java and Javascript Security on the Server
The System Administrator can decide the access rights for agents and code
utilizing the Domino Object Model based on the ID that the agent/code is
signed with.

In the Security part of the server document there are entries for specifying:

• Agent Restrictions: options to specify who can:

• Run personal agents.

• Run restricted LotusScript/Java agents.

• Run unrestricted LotusScript/Java agents.

244 Lotus Domino Release 5.0: A Developer’s Handbook

• NOI Restrictions: options to specify who can:

• Run restricted Java/Javascript.

• Run unrestricted Java/Javascript.

Here the System Administrator can enter specific IDs, for example:

Domino Development/IBM

or give access to a whole organization, for example:

*/IBM

You can read more about the different levels of restrictions for agents and
the Domino object interface in the Domino Administration Help.

Signing a Database
You can sign templates and databases developed by your organization so
that you can then add the associated name to the Administration ECL. To do
this:

1. Launch the Domino Administrator client. One way to do this is through
the menu. Choose File - Tools - Server Administration.

2. If the ID you want to use to sign is not the current one, switch to the
correct ID.

3. Click the Files tab.

4. Select the server that stores the databases or templates that you want to
sign.

5. Select the databases or templates that you want to sign by highlighting
them in the listbox.

6. In the Tools pane, expand the list under Database.

7. Click Sign. A dialog is displayed.

8. Select which elements to sign. To sign every design element in a
database or template, select Sign every design note.

9. Click Sign. A dialog box shows the number of databases processed and
the number of errors that occurred (if any). See the log file for details.

10. Click OK.

Access Control for HTML and Other Files
Domino extends its access control to files in the file system. This is
particularly useful for HTML and other types of files used in Web sites.
When using the Domino native HTTP stack, you will be able to configure
access control lists for files (HTML, GIFs, etc.) in the file system. This gives
you complete security and access control for your Domino Web sites, no
matter how they are built or where their assets are stored.

Chapter 8: Securing Your Application 245

File system protection does not apply to CGI scripts, servlets, or agents that
access files on the system. The scripts, servlets, and agents have full access to
any files accessed. File system protection does apply, however, to files that
access other files, for example, HTML files that open image files. If a user has
access to the HTML file, but does not have access to the JPEG file that the
HTML file uses, Domino does not display the JPEG file when the user opens
the HTML file.

A File Protection document needs to be created for each directory that
contains files that you want to protect. The directory is relative to the HTML
directory, set in the Server document or, if you have virtual servers, set in
the Virtual Server document.

1. Open the Domino Directory.

2. In the Server/Servers view, highlight the Server document for the server
on which you want to protect files.

3. Choose Actions - Create File Protection, fill out the following fields, and
save the document:

Continued

The drive or directory that you want to
restrict. The path is relative to the HTML
directory specified in the Server document or,
if you have virtual servers, the Virtual Server
document. If you want to restrict access to
specific files, enter the name of the file or use
the wildcard characters * or ? to specify a
group of files.

PathPath

If you selected Virtual Server, enter the IP
address of the server to which the file
protection applies.

IP Address

If you have virtual servers on this machine,
select whether you want this setting to apply
to all virtual servers on this machine or only
to the virtual server you specify.

Applies toBasics

ValueFieldTab

246 Lotus Domino Release 5.0: A Developer’s Handbook

The users who can access the files you
specified and the type of access they are
allowed.

To add users to this list, click Set/Modify
Access Control List. Select a user name from
the Public Address Book in the Name field
and select Read-Execute, Author, or Full
access. Read-Execute lets the user open files
and start programs in the directory. Author
lets the user create new files in the directory
in addition to the Read-Execute privileges.
Full access lets the user delete files in the
directory in addition to the Author privileges.

If users connect to the server using
Anonymous access, enter Anonymous in the
Name field and assign the appropriate access.

Current access
control list

Access Control

ValueFieldTab

4. Create a File Protection document for every path that you want to
restrict on the server.

5. At the server console, type tell http restart to refresh the file
protection settings.

6. To display the File Protection document, open the Server\Web
Configurations view. Notes displays the File Protection document as a
response to the Server document.

APIs for Customized Authentication, Encryption, and Signing
Domino R5.0 offers new APIs for:

• Authentication of Domino users by another system.

This is part of the Domino Web Server API.

• Authentication of user for other applications.

This is part of the support in Domino R5.0 for the Common Data
Security Architecture interface.

Customizable Authentication Through Domino Web Server API
By using a new API provided with Domino R5.0 you may now create your
own authentication schemes for Domino that can leverage external
directories or security systems. This interface provides you with greater
flexibility in integrating Domino into your existing environment and
building “single-sign on” log in capabilities. Refer to the Domino
documentation or the redbook The Domino Defense: Security in Lotus Notes and
the Internet, IBM part number SG24-4848 (Lotus part number 12967) for more
information.

Chapter 8: Securing Your Application 247

Common Data Security Architecture (CDSA)
Domino provides a common, multivendor interface for managing various
security services including a standards-based interface to Domino security
for application developers. This interface exposes Domino encryption,
signing, authentication, and other elements to application developers. CDSA
makes the process of adding security to Domino applications easier and
provides for interoperability between different applications that use security.
Refer to the Domino documentation for more information.

Backup and Restore
Backup and restore is also part of securing your application.

You need to work with your System Administrator on how to implement
backup and restore of application data during production. In larger
organizations there will often be a standard mechanism for these important
processes.

During development it is also important that you secure your work against
loss through user or system error by making a backup of your development
databases on a regular basis.

Developing a Plan for Securing Your Application
Securing a Domino application is a joint effort. The database Designer must
work closely with the System Administrator and the database Manager to
successfully design, create and deploy a secure application.

Depending on the company, the database Designer, the database Manager,
and the System Administrator may be one person or three separate people.
The System Administrator often takes over the responsibility of database
Manager when the database is launched.

The following table shows a guideline for the tasks that are the normal
responsibility of each participant in an application:

Set up and authorize users
and groups

Update the Domino
Directory

Manage the server

Propagate replication

Manage user issues

Implement the ACL

Update the ACL

Design a security scenario

 Design the access control list
(ACL)

Implement Design tools for
security

Implement Design changes
Implement the ACL

System AdministratorDatabase ManagerDatabase Designer

248 Lotus Domino Release 5.0: A Developer’s Handbook

Database Manager and System Administrator
Securing servers and controlling access to a domain is usually the
responsibility of the Server Administrator. In addition, in a production
environment, it will be the System Administrator who is assigned the role of
database Manager in the ACL for purposes of setting up and maintaining the
ACL. The database Manager should receive the following kinds of
information from the Designer:

• A list of users, groups, and roles in each database.

• A comprehensive security plan for each database, so that it can be
maintained on the server.

• All changes that are made in user and group access.

• Updates to access levels and restrictions.

Database Designer
While the Designer must design the security plan for the application, it is
usually the System Administrator who has responsibility for implementing
and maintaining the security plan. Therefore, it is essential that you work out
your plan carefully, so that you can document it for the database Manager.
Designers need to:

• Work with the Server Administrator while designing the application so
that access levels and replication can be set up properly.

• Let the Server Administrator know whether there are any applications
that require anonymous access.

• Determine which users and groups have access to which parts of the
application.

• Decide what roles need to be added to the ACL for each database in the
application.

• Document design changes for the Server Administrator so that they can
replicate appropriately.

Note All users and groups need to be listed in the Domino Directory before
they can be added to the access control list in a database.

Chapter 8: Securing Your Application 249

Key Design Issues
Before setting up the ACL for an application, you need to create an access
scenario. Use the following questions to create the scenario:

• Who is responsible for setting up and maintaining the ACL?

The System Administrator usually has overall responsibility for the
ACL, and the Designer would document the security mechanisms to be
used for the Administrator.

• Which users need what kind of access?

The Designer needs to inform the System Administrator about which
access levels to set for users, servers and groups.

• Can you determine groups of users who need the same kind of access?

The System Administrator needs to make sure that the groups are listed
in the Domino Directory before adding them to the ACL.

• How is the database distributed: by direct replication or by design
template?

Design templates allow you to change and replicate the design without
disturbing the production database. Design changes happen
automatically through the designated template on the same server.

• Is there a hub server responsible for replication?

If so, you should set up replication so that changes are added to the hub
replica, then the hub adds the changes to other servers.

• Will this application be deployed on the Web?

If so, it is advisable to always have an Anonymous entry for Web users
so that you can specify exactly what Web users can do without
registering.

Note The backup and restore of application data is part of securing the
application. You also need to consider this during the design of your
application.

Server Access
Server documents in the Domino Directory contain restrictions that are used
to control access to a server. The database access control list refines these
restrictions, but cannot override them.

Caution You cannot use server lists to control access by Web clients. The
clients are not authenticated until they try to access a database.

250 Lotus Domino Release 5.0: A Developer’s Handbook

Servers in the Database ACL
If there are replicas of a database, add server names and server groups to the
ACL. Server access levels affect what information can be exchanged between
the replica databases.

It is important to understand which design changes replicate and which do
not, and how the database ACL and other replication settings affect the
distribution of design changes:

• Servers need to have Editor access at minimum, so that they can
replicate data changes.

• Servers must have Designer access to replicate design changes.

Planning for Web User Access
Users are granted access to the Domino Web server through basic
authentication; the standard for Web security that is based on a
challenge/response protocol.

The Web user can be challenged upon initial access to the Web site if
restricted, or upon request to open any database that is restricted by the
default entry in the ACL of No Access, or an Anonymous entry in the ACL
of No Access.

All Web users have access to any database on the server that has a default
access of Reader. If the database is restricted, a Web user must be listed in
the Domino Directory with an HTTP password.

You can define additional access privileges and refine the ACLs for an
authenticated user for a server, database, document, and so on.

Controlling Web Access to Domino Data
To set up Web access to your Domino data, you:

• Authenticate any Web client accessing a Domino server, database view,
or document.

• Define server authentication at the user level by creating Web users and
passwords.

• Choose which databases can be accessed by Web users and what level of
access to provide for each database. It is a good practice to create a
separate database for the home page and use ACL restrictions to control
access to all other databases.

• Determine how to handle anonymous users.

• Optionally add encryption to HTTP transactions by activating Secure
Sockets Layer (SSL) at the server.

Chapter 8: Securing Your Application 251

Planning for Anonymous Users
You can control the level of access to a database for users who are not
recognized by the system. These include both Web users and Notes users
who do not share a certificate in common with the server. Such users are
considered anonymous users.

Anonymous Access to Servers
Before anonymous users can be granted access to a database, they must be
allowed server access. In the security section of the server document, the
Administrator defines the security settings in the following ways:

If the Compare Notes Public Keys Against Those Stored in the Address Book
option is:

• Yes; then the Notes user must have an entry in the Domino Directory to
access the server.

• No; the Notes user does not have to exist in the Domino Directory to
access the server.

If the Allow Anonymous Notes Connections option is:

• Yes; then all Notes users in the world can access the server.
• No; then only Notes users who have a certificate in common with the

server can access the server.

Distinguishing True Security Features
As you have gathered from reading this chapter, it is important to
distinguish between true security features and access control features that
are used to make it more or less easy for users to use the application, and
where the access control can be circumvented. Use this table to distinguish
between the security abilities of the different database elements:

Continued

Yes, as in NotesYes, for users that have
Author access in the ACL.
However, users with Editor
access will be able to edit the
document even without
being in the Reader list.

Author name fields

YesYesReader Access Lists and
Readers fields

YesYesPublic Access to
documents

YesYesACL

On the Web…In Notes…Is this a true security
feature

252 Lotus Domino Release 5.0: A Developer’s Handbook

No (Not Applicable)NoPrevent Copying and
Forwarding

Depends:
No - when “Generate
HTML for all fields” is
chosen.
Yes - when “Generate
HTML for all fields” is
deselected.

No, users can always see
field content through the
Document Properties
dialog box.

Hide-when formulas

Depends:
No - when “Generate
HTML for all fields” is
selected.
Yes - when “Generate
HTML for all fields” is
deselected.

No, users can always see
field content through the
Document Properties dialog
box.

Form restrictions

YesNo, users may create private
views and will be able to see
all document content that
isn’t protected by Readers
fields or encrypted fields.

View restrictions

No, Given the document
ID a Web user can get
around the control in a
section (this is not for the
casual Web user though).

No, users can modify the
section through a different
form, but combined with
signing the section
non-authorized updates can
be discovered.

Controlled Access
Sections

Not ApplicableYes, verifies ownership.Signing

Not ApplicableYesField Encryption

On the Web…In Notes…Is this a true security
feature

Summary
In this chapter we discussed the various levels of security available to
Domino Server Administrators and application developers to secure
information within a Domino database. We also discussed how Domino
implements standard Internet-based security protocols and how these can be
used.

Chapter 8: Securing Your Application 253

This chapter will cover setting up Web searching with Domino. Topics
covered include:

• Search related URLs

• Full text indexing of databases

• Customizing search forms

• Customizing search results

• Setting up a site search database

Adding Search Capabilities to Your Web Site
As the number of databases making up a Web site increases, and the amount
of data grows, you will want to add search capabilities to the site. Enabling
your users to search for text throughout a Web site, or within a view, helps
them to quickly and easily find the information they are looking for.

Domino provides a Full text search engine that acts on text within
documents in a Domino database as well as searching the PDF, Word, Word
Pro™, 123®, Excel, Freelance®, PowerPoint, and Ichitaro file attachments
within those Domino documents. To do this the Domino server requires the
HTTP server to be installed.

You can set up your site to allow text searching within a single view or in
multiple databases. Creating an index for multiple databases requires
creating a search site database on a server. The person creating the search
site database specifies a search scope that includes all the databases to be
included in the desired index, plus the type of information to be included.
Each database in the search scope must have the “Include in multi database
indexing” design property enabled.

You should then include buttons or links within your views, pages, or forms
to open a search form when users click them. The users fill in the search
criteria on the form and Domino returns a list of links to the documents that
match the criteria.

Chapter 9
Searching

255

Search-Related URLs
You can use the @Command([ViewShowSearchBar]) in the formula for your
buttons or links to bring up the search form, or you can define a URL to
display the search form. The search form can be either a customized search
form or the default search form. Search-related URLs are available for both
view searches and search site searches.

Search View URLs
You use search view URLs when you want to limit a search to documents
displayed in one database view.

The search view URL enables you to control the search results. If you want
users to be able to search on all documents in a database your search view
URL points to a view displaying all documents, or you can limit the search,
for example, to a view that shows only documents whose status is
Completed.

When using the search view URL you can specify the number of documents
you want to return from the search, and where in the returned list you want
to start counting.

To display a search form for user-defined searches, include the $SearchForm
object in the URL:

http://<site>/<database>/<view>/$SearchForm?SearchView

And if you want to specify the return documents, you can use the Start and
Count arguments:

http://<site>/<database>/<view>/$SearvhForm?SearchView&Query=st
ring_to_find&Start=start_number&Count=count_number

Where the string_to_find is the string you want to find, start_number is the
number at which to begin counting the results, and count is the number of
results to return.

The next example returns the 1st through to the 10th result that contains the
word “CD-Records” in the “By Product” view:

http://www.lotus.com/Millenium.nsf/By+Product?SearchView&Query=
CD-Records&Start=1&Count=10

256 Lotus Domino Release 5.0: A Developer’s Handbook

Search Site URLs
You can use search site URLs for text searches in multiple databases. The
URL requires the name of a search site database.

To display a search form for user-defined searches, include the $SearchForm
object in the URL:

http://<site>/<search site database>/$SearchForm?SearchSite

It is also possible to use the Start and Count arguments to return the number
of documents:

http://<site>/<database>?SearchSite&Query=string_to_find&Start=
start_number&Count=count_number

Where the string_to_find is the string you want to find, start_number is the
number at which to being counting the results, and count is the number of
results to return.

The next example returns the 20th through to the 29th result that contains
the word “Milk”:

http:/www.lotus.com/groceries.nsf?SearchSite&Query=Milk&Start=2
0&Count=10

Full Text Indexing
It is a prerequisite for Web searching with Domino that the databases you
want to act on are Full text indexed. Use the Full Text tab in the database
properties box to create a Full text index on a database.

A Full text index is a collection of files that lets a user search one or more
databases for information. After creating a Full text index, a user can enter a
word or phrase and locate all the documents containing that word or phrase.

Chapter 9: Searching 257

To create an index for a single database stored on a server, you must have
Manager or Designer access. You can index any database stored on your
workstation without regard to access levels.

The Full text index for a search site database lets a user search all the
databases in the search scope. Creating and maintaining a search site
database can greatly affect system resources and performance. The system
administrator should administer search site databases. As a database
manager, you should know if any of your databases are associated with a
search site database.

Security Issues
If the default Index Encrypted Fields option is selected when the index is
created, the following three things happen:

• Any Notes user with access to the database can search for phrases within
the encrypted fields without the encryption key. For example, the
Employee form in the Personnel database contains the encrypted field
Salary. With the Full text index, any user can search on “50,000” and
documents containing that figure are returned; however, the user cannot
read the contents of the field without the encryption key.

• The Full text index file is unencrypted plain text, and anyone with access
to the server can read the file. Encrypted text may now be unencrypted.

• The encryption key is part of the server ID, and is active for all databases
on that server. If you index a different database and do not deselect
Index Encrypted Fields, any fields using that encryption key are
compromised.

Location of a Full Text Index
When you create a Full text index, Domino creates a subdirectory in which to
store the index files. Domino names this subdirectory using the name of the
indexed database and the file extension .FT. When indexing multiple
databases, the search site database is the indexed database.

For example, if you index a database named LOG.NSF, Domino creates the
subdirectory LOG.FT. Domino places the subdirectory in the same directory
as the database, usually the Notes data directory.

258 Lotus Domino Release 5.0: A Developer’s Handbook

Size of a Full Text Index
The size of a Full text index depends on two factors:

• The ratio of text to non-text elements (such as bitmaps, buttons, and
agents) in the indexed database(s). The percent of text typically ranges
from 25% to 75%. If you choose to index attachments (including OLE
objects) or encrypted fields, the text associated with them increases the
percentage of text available for Full text indexing.

• The index options chosen. The Word Breaks Only option creates a Full
text index that is about 50% of the space used by text in the database.
The Word, Sentence, and Paragraph Breaks option creates an index that
is approximately 75% of the space used by text.

Full text indexes take up a significant amount of disk space and you need to
be sure adequate system resources are available to store an index.

Full Text Index Updates
Since the contents of most databases change over time, Full text indexes
associated with them need to be periodically updated to keep in sync with
the changes. You must manually update indexes on databases stored on
your workstation. Domino automatically updates indexes on server
databases according to frequencies selected by the database Manager for
individual databases or System Administrator for a search site database.

Note Documents added to the database since the database’s Full text index
was last updated will not be returned by the search.

Customizing Search and Result Forms
You can customize searching at your site by adding you own design touches
to search-input and search-result forms. A customized search form must be
named $$Search, either as its actual name or as an alias. When a user clicks
a link to open up a search form, Domino looks in the current database or in a
search site database for a form of that name. If the form exists, Domino
opens it. If it doesn’t find it, Domino uses the default search.htm file found in
the icons directory on the Domino server.

You can either customize the search.htm file, create a new search form of
your own, or copy & paste the search forms provided in the Search Site
database. There are two Web search forms in the Search Site database:

• Web Search Simple. This is used for simple searches. It includes a link
to the Web Search Advanced form.

• Web Search Advanced. This form allows users to create more advanced
searches.

Chapter 9: Searching 259

The forms are designed to work in a Search Site database. To use the forms
in a database that allows view level search you must change the formula in
the $$Return field.

1. Copy the Web Search Simple form to the database where you want to
use it.

2. Open the form in Design mode.

3. Go to the $$Return field. The beginning of the original formula looks like
this:
DBName:=@Subset(@DbName;-1);

"[[/"+DBName+"?SearchSite&Query="+Query+"&SearchOrder="

4. You need to change the ?SearchSite to ?SearchView and add a viewname
after the DBName. The start of the new formula should look like this:
DBName:=@Subset(@DbName;-1);

"[[/"+DBName+"/ViewName/?SearchView&Query="+Query+"

where ViewName is the name of a view in your database. The rest of the
formula should remain the same. Since you are creating a URL, the
viewname must start and end with a forward slash (/), and spaces in the
viewname must be replaced with plus signs (+).

Make the same changes to the Web Search Advanced form if you want to
include the advanced search in your database.

Creating a TeamRoom Search
In the following example we will create a simple-to-use customized search
form. The form allows users to write a free-text search or use appointment
pre-defined values to create queries. The form also enables the user to set the
number of documents to be returned. Based on user selections, the form
generates the search view URL and returns a list of documents found.

To avoid forcing users to learn the syntax for creating complex queries like:

(<FreeText>) AND (FIELD Remote_User=Jane Woody) AND (FIELD
Subject=<Document
Subject>)&SearchOrder=<Value>&Start=<Value>&Count=<Value>&Searc
hWV=<Boolean>&SearchThesaurus=<Boolean>

You can create a simple-to-use interface for building complex queries.

260 Lotus Domino Release 5.0: A Developer’s Handbook

We will use the TeamRoom database as an example, where we have created
a few documents. We want to enable users to search their documents where
the Subject field is one of the available values in the Appointment fields of
the Search form and the searchable documents have to contain the Search
Form FreeText fields value (If the value is entered).

Note You have to authenticate first that you have been recognized by the
browser.

Chapter 9: Searching 261

1. Start by creating a new form and giving it an alias of $$Search.

2. Create the following non-hidden fields:

• Name.

The Name field sets the current user name that we are using to search
for the user’s documents.

Select the Field type Text and computed, and in the Design pane
(Default value) enter the following formula:
@Name([CN]; @UserName);

• FreeText.

FreeText is the field where the user can write the search string.

• Appointment.

262 Lotus Domino Release 5.0: A Developer’s Handbook

Appointment field is a keyword field what contains the following
values:
Customer meeting

Internal meeting

Team meeting

Reminded

Untitled

The next fields determine how the return documents display:

• Return.

This field determine how many documents you want to return.

• ExactMatch.

This is a keyword field which specifies whether you would like to
return only documents which contain exact matches to the current
word.
Find exact word matches only | 1

• UseThesaurus.

This is a keyword field and it finds word variations as defined by
thesaurus.
Find word variations as defined by thesaurus | 1

• Sort.

The Sort field determines in which order you want to return the
documents.

Sort field is a keyword field that may contain the following values:
Relevance|1

Oldest first (by date)|2

Newest first (by date)|3

3. Create the following hidden fields:

• The Query field is computed. It is used to generate our query
arguments. Enter the following formula for the field:
user:="FIELD Remote_User="+Name;

app:="FIELD Subject="+Appointment;

@If(FreeText!="";"("+FreeText+")" + "AND" +user;"")+

@If(FreeText="" | Appointment="" | dstring=""; "("+
user+ ")";"")+

Chapter 9: Searching 263

@If(FreeText="" & Appointment!=""; " AND "+ "("+ app
+")";"")

The user variable gets the “FIELD Remote_User=”+Name field, which
is the name of the current user. The app variable gets the “FIELD
Subject=”+Appointment. This is used to determine the search query.
The rest of the @If-functions seek what the user has entered; if both
field values are empty, then Domino uses only the Name field for
creating the search query.

• We are using the $$Return field to generate our search URL with the
search arguments, and have the browser immediately return the
result of our query. To return a URL, the $$Return field must specify
a URL in square brackets:
DBName:=@Subset(@DbName;-1);
"[[/"+DBName+"/OpenView/?SearchView&Query="+Query+"]]"

When a user enters data in a form, like our search form, Domino
normally acknowledges the submittal. To overrule the submittal
functionality of the $$Return field and go directly to the results page
we enclose the URL in double square brackets.

• Normally, when a Web user submits a form, Domino will create a
document in the database. In our case we do not want to create
documents with the query form. To prevent this from happening we
use a special Notes field called SaveOptions. If the field value for the
SaveOptions field is “0” Domino will not save the document.

We have now accomplished what we wanted. Our users can now construct
complex queries in the database by writing the free text query and simply
pointing and clicking, without having to worry about the correct syntax.

Note We have used the (OpenView) view for showing all the databases
documents, where the Search query is searching the documents.

Note All that is left to do is adding a link from our Web site to open the
customized search form using the URL:
[</<database>/<view>/$$Search>]

264 Lotus Domino Release 5.0: A Developer’s Handbook

Customizing Search Result Forms
To customize the Search Results page, create a form and assign it one of the
form names below:

• $$SearchTemplate for <viewname>
Associates the form with a specific view. The form name includes
<viewname>, which is the alias for the view, or, if no alias exists, the
name of the view.

• $$SearchTemplateDefault
This form is used as the default search result form for all Web searches
that aren’t associated with a specific form.

Both forms require a $$ViewBody field on the form. The value of the field is
ignored by Domino, but the field is mandatory on a search result form.

Note The following features in the default Search results form provided
with Domino cannot be built into a customized Search results page:

• A count of the number of documents found

• The ability to restate the search query

• A search bar that allows users to reset search results

Chapter 9: Searching 265

Search Site Databases
You can create search site databases that enable users to search multiple
databases for information. To set up a search site database, you should
configure a search scope which defines the databases and the information in
them that users can search. The databases included in the search scope can
span more than one server and more than one domain, but must have the
Include in Multi Database Indexing option selected.

You then create a Full text index that indexes all the databases in the
configured search scope. You don’t need to create Full text indexes for
individual databases included in the search scope unless you want users to
be able to perform view searches as well.

You can create more than one search site database, each indexing a group of
related databases. For example, you can create a search site database for
marketing databases, another for sales databases, and another for customer
service databases.

To search the databases for information, users fill out a search form in the
search site database and specify search criteria. Domino returns each
document found in a search results form, as in the case of single database
view searches.

Creating a Search Site Database
1. Choose File - Database - New.

2. Select server location.

3. Enter a title and file name for the search site database.

4. Select Show Advanced Templates.

5. Select Search Site (SRCHSITE.NTF) as the template.

6. Click OK.

Note The default access of the database created is Author. There is a role
named [SearchSiteAdmin] in the access control list, which is associated with
the Search Scope Configuration form and all of the views except the Private
Searches view. Database Managers should assign this role to anyone who is
authorized to create configuration documents in the database.

Defining a Scope
Create Search Scope Configuration documents:

• To specify a domain as a search scope, click Domain and enter the name
of the Domain.

• To specify a server as a search scope, click Server and enter the name of
the server.

266 Lotus Domino Release 5.0: A Developer’s Handbook

• To specify a directory on a server as a search scope, click Directory then
enter the name of a server and a directory on the server relative to the
Notes data directory.

• To specify a specific database as a search scope, click Database and enter
the name of the server and the file name for the database.

Refining a Search Scope
When you modify a database entry to refine a search scope, for example
when you change the Full text index option to No Index to exclude the
database from searching, Domino create a search scope configuration
document for the database that reflects the change.

A search scope may be refined automatically according to which databases
have the design property Include in multi database indexing. For example, if
this design property is selected for only ten databases on a server, you can
create a search scope configuration with the server as a scope, but only those
ten databases are indexed.

Caution When you change configuration options, you have to delete the
Full text index on the search site database and recreate it for the changes to
take effect.

Database Views
You use any of the following views to see the databases included in a search
scope:

• All By Server

• Databases By Category

• Databases By Replica ID

• Databases By Server

• Databases By Title

Selecting an Indexing Option
The index option you select affects the size of the Full text index for the
search site database.

• To exclude databases from the selected scope of a search, click No Index.
This option excludes a database or databases and therefore adds nothing
to the index size.

• To index only summary data that appears in views and not rich text or
attachments, click Index Summary Data (No RTF). If a search scope is
wide-ranging, use this option as a way to limit the size of the Full text
index.

Chapter 9: Searching 267

• To index only summary data and rich text but not attachments, click
Index Full Document.

• To index summary data, rich text, and attachments, click Index Full
Document and Attachments. This indexing option increases the index
size the most. Notes indexes only the ASCII text in attachments and OLE
objects. If an attachment or OLE object is compressed, it is not indexed.

Multi-Database Full Text Indexes
A Full text index created for a search site database is just like a Full text
index created for a single database except that it indexes multiple databases.
The index is stored in a subdirectory to the Notes data directory that stores
the search site database. The subdirectory name is SEARCHSITE.FT, where
SEARCHSITE represents the name of the search site database without the
.NSF extension.

You should plan carefully which databases and data to include in a search
scope, and make sure the server that stores the search site database has
adequate space. Including many databases in a search scope may require a
server which stores only the search site database. You can help keep the
index size to a minimum by selecting the index options Word Breaks Only
and Exclude words in stop word file, when you create the index, and by
selecting the option Index Summary Data when you configure a search
scope, which prevents rich text from being indexed.

Because updating the Full text index of a search site database can take some
time, you should select Daily as an update frequency so that the index
updates once a day during off-hours.

How Users Search Using a Search Site Database
Incorporate SiteSearch URLs in your site by adding them where you want
them. The search site database contains two Web forms you can use as is or
modify:

• Web Search Simple.

• Web Search Advanced.

The search criteria the forms use is similar to the criteria used for a
single-database search. You can search for a specific word or phrase or
perform advanced searches which allow searches for multiple words, word
variations, synonyms defined by the thesaurus, and documents by date and
category. The search results can also be sorted.

Domino returns each document found in a Search Results document. Each
document entry includes a document link and summary information about

268 Lotus Domino Release 5.0: A Developer’s Handbook

the document from the default view of the database the document comes
from.

Caution All people and groups in the ACL for the databases included
in search scope must have at least Reader Access (including the
OtherDomainServers group). If not, the document entry in the search
results form will only show the document link as the database name; it will
not display any summary information about the document. If you are using
ReaderNames fields in a database, those documents will not appear in a
search.

Note If the property Show in Open Database dialog, has not been selected
for a database in the search scope, then a Search Results document for that
database shows a document link but no text.

Customizing Search Site Result Forms
To customize the Search Results page in a search site database, create a form
and assign it the following name: $$SearchSiteTemplate. This form is used as
the default search result form for all Web searches in the search site
database.

The form requires a $$ViewBody field. The value of the field is ignored by
Domino, but the field is mandatory.

Summary
Domino provides a powerful Full text search engine that acts on text within
documents in Domino databases. With Domino you can combine text
searching within a single view or in multiple databases.

To enable view level searching, databases must be Full text indexed. The
search site database indexes all databases in the search scope. A database
included in the search scope does not need to be Full text indexed itself,
unless you want to allow view level searching on the database as well.

Search and result forms are fully customizable, enabling you to utilize all the
forms design features such as graphics, buttons, tables, and navigators when
you design search facilities for your Web site.

Chapter 9: Searching 269

This chapter will cover the available methods to use when programming in
Domino. We will briefly discuss Simple Actions and the Formula language,
but will also focus on the LotusScript and JavaScript languages. The chapter
will explain how, when, and where you can use them and also introduces the
new formulas and LotusScript functions that are available in Domino R5.0.

Hints and tips on how to manage your code more efficiently using the
Template database are also included.

Programming in Notes
The following section explains the differences between the three existing
integral programming interfaces to Domino: Simple Actions, LotusScript and
the Formula language. It will give you a short overview of Simple Actions,
and it will compare LotusScript and @functions. The examples are written in
LotusScript, which is one of the programming languages you can use to
develop your applications.

Simple Actions
These are predefined actions which allow you to define a sequence of actions
without requiring any programming knowledge. They are ideal for the end
user who wishes to automate some routine tasks. The simple actions
available are:

• Copy to database

• Copy to folder

• Delete from database

• Mark document read

• Mark document unread

• Modify field

• Modify fields by form

• Move to folder

Chapter 10
Programming for Domino

271

• Remove from folder

• Reply to sender

• Run agent

• Send document

• Send mail message

• Send newsletter summary

• @Function Formula

Note Simple Actions only cover basic functions. To implement more
complex functions you might consider using @formulas or a programming
language, such as LotusScript or Java.

Formula Language
Domino formulas are expressions that have program-like attributes. For
example, you can assign values to variables and use a limited control logic.
The formula language interface to Domino is provided through calls to
@functions. If you are familiar with the macro language in other products,
such as 1-2-3, then you will quickly become proficient in the @functions in
Domino.

@Functions are a powerful tool when you want to manipulate the current
Domino document in an application, since the developer need not obtain the
context for the document.

@SetField(@Subset(TmpVar; 1));

or, you can use only one function at the time:

@UserName;

Error Handling Using Formulas
New to Domino R5.0 are improved formula error messages. Formula error
messages now give specific information as to where the error has occurred,
which helps developers when debugging their applications.

For example, if you are entering a syntactically incorrect @formula
expression for field validation, Domino will now give you an accurate
message as to where it has detected the error.

272 Lotus Domino Release 5.0: A Developer’s Handbook

New Functions
The following table summarizes all the new functions and commands in
Domino R5.0:

Continued

In a database that has soft deletes enabled (a
new database property), this command
removes the soft deleted status if a
document has been soft deleted.

@UndeleteDocument

This feature allows application designers to
specify a target frame when opening Notes
design notes.

@SetTargetFrame

@OpenCalendar

Converts full-pitch alphanumeric character
(Double byte characters — DBCS) in the
specified string into half-pitch alphanumeric
characters (Single byte characters — SBCS).

@Narrow

Internally @NameLookup functions calls the
NAMELookup Notes API, specifying
“($Users)” view for view name to be
searched.

@NameLookup

Returns the language name for the specified
Notes internal language code.

@Locale

Only works in an agent running a formula.
Physically deletes a document from the
database, as opposed to
@UnDeleteDocument and
@DeleteDocument which now have options
to soft delete documents.

@HardDeleteDocument

Brings you the list of available fonts.@FontList

Counts all the unread documents in the
database.

@DbUnreadCount

Returns information about the user agent,
including version, HTML/JavaScript
support, language, etc.

@BrowserInfo

Adds current document to one folder while
removing it from another. NULL string can
be substituted for either argument to skip
the action.

@AddToFolder

DescriptionFunctions & Commands

Chapter 10: Programming for Domino 273

Used only in dialog boxes. This formula
sends the values entered in the dialog box to
the parent document. A Designer can update
a parent note and close the dialog box
without having to use the OK button on the
dialog box.

@Command([RefreshParentNote])

Opens the Defined Page.@Command([OpenPage])

Opens the defined Help document.@Command([OpenHelpDocument])

Opens the defined frameset.@Command([OpenFrameset])

Opens the Directories windows.@Command([Directories])

Converts half-pitch alphanumeric characters
(Single byte characters - SBCS) in the
specified string to full-pitch alphanumeric
characters (Double byte characters - DBCS).
This function works in Japanese, Korean,
Simplified Chinese, and Traditional Chinese
environments. In the Japanese environment,
this function can convert half-pitch
Katakana as well.

@Wide

This function validates the Internet address.@ValidateInternetAddress

Returns a text list of all the names by which
the user is authorized: user name, group
names, and roles. This is the same list that
appears in the “Groups and Roles” dialog
when you click the “What’s my access”
button on the status bar in R4.

@UserNameList

@UserNameLanguage returns language tag
associated with your user ID. It is a corollary
function to enhanced @UserName.
@UserNameLanguage retrieves language
tags from your ID file that are expected to be
the same value within the
AltNameLanguage field in the Domino
Directory.

@UserNameLanguage

@LanguagePreference returns a user’s
preferred language for database contents. If
a database has language-dependent contents
like design elements or data, the preferred
language is used to select suitable contents
from the database.

@LanguagePreference

274 Lotus Domino Release 5.0: A Developer’s Handbook

LotusScript
Despite all the attention being given to Java and JavaScript languages in
Domino, LotusScript is not going away; in fact, a new version of LotusScript
is included in Domino R5.0, LotusScript R4. LotusScript offers the
application developer the wide variety of features expected of a modern,
fully object-oriented programming language. Its interface to Domino is
through predefined object classes. Domino oversees the compilation and
loading of user scripts and automatically includes the Domino object class
definitions. This allows you to code your programs in an efficient way.

While @functions are ideal for coding simple logic, for example, input
translation or input validation of a field, LotusScript provides the ability to
code loops, select (case) constructs, and a lot more. Also, the Integrated
Development Environment (IDE) performs automatic indentation, which
follows the program logic in IF-THEN-ELSE and loop constructs and makes
your programs readable and easy to maintain.

Furthermore, the hierarchy of the Domino object classes represents the flow
of control you follow in the user interface if you step down from a database
icon to a view, and further on to a document, and to a specific field within
this document. For example, if you are coding in LotusScript, you will start
with the UIWorkspace class and go down to the UIDocument class which
represents the currently open document. Once you have set this object
variable, you have access to the fields of the document.

The same principle applies if you are working with the back-end classes of
Domino, which represent the objects you might wish to work with that are
not in the user interface. You will start at the Notes Session class and go
down through the Notes Database class to the Notes Document class. The
front-end and back-end classes are described in the section about Domino
Object Models.

Here is a short summary of the benefits offered by LotusScript:

• Superset of BASIC

Since LotusScript is a superset of the BASIC language, it is easy to learn,
especially for Visual Basic users. You can write sophisticated scripts by
using conditions, branches, subroutines, while loops, and others.

• Cross-platform

LotusScript is a multi-platform scripting language. You can create just
one application, which can be used on any supported platform.

Chapter 10: Programming for Domino 275

• Object-oriented

Domino objects are available to LotusScript. You can write scripts to
access and manipulate these objects. The scripts are event-driven, such
as by an action, clicking the object or button, opening a document, or
opening a view.

• Included in Lotus applications

Since LotusScript is supported by all the Lotus products, these products
are able to access Domino objects using a Domino-supplied LotusScript
extension. Another advantage is that you only need to learn one
language to become proficient in writing scripts in other Lotus products.

• OLE support

Domino can be the perfect container for SmartSuite documents and
other OLE-enabled applications, such as Microsoft Office. You can use
external OLE 2.0 automation objects by scripting them, such as 1-2-3
worksheet objects.

Domino registers itself as an OLE automation server. External
applications can use these objects in scripts to create and reference them.
LotusScript is able to combine all the parts and provide the means for
controlling and manipulating objects.

• Coexistence with Notes @functions

Lotus continues to support @functions. LotusScript can work with them.

• Integrated development environment

The Domino R5.0 Integrated Development Environment (IDE) provides
an easy-to-use interface to create, edit, and debug scripts, and to browse
variables and properties of the Domino Object Model. This allows you to
write more complex scripts in Domino.

• Extendable through LSXs

You may extend LotusScript by writing your own classes, which are
called LotusScript eXtensions (LSXs) in C or C++, as a Dynamic Link
Library, DLL. Creating your own LSXs allows you to expose custom
functionality to LotusScript developers in precisely the same way as
Domino functionality is exposed. You might use this, for example, if you
have customer processing logic, such as a proprietary pricing process,
that you wanted to make available to Domino developers.

• Connecting to external databases

You can connect your application to use another database, for example
DB2, by using the LS:DO. The benefit is that you can use the existing
database so that data is stored in only one place.

276 Lotus Domino Release 5.0: A Developer’s Handbook

The Domino Object Model
We will now take a look at the Domino Object Model (DOM). Using this
model, you have access to Domino databases and application services. The
Domino Object Model is mapped to a set of object-oriented classes available
for building applications. You can access the Domino Object Model from a
broad range of languages, including Java, LotusScript, and Visual Basic. In
Domino R5.0 the classes have also been exposed as CORBA objects to enable
the creation of distributed applications. For more highly customized
applications, you can directly access Domino services using the C++ APIs.

If you are going to write your own application you can use the objects,
methods and properties defined in this model to work with Domino objects,
for example, databases, views, and forms. Normally, you use the properties
of an object to get information about the object, for example, you use the
ReplicaID property of the database object to query the ReplicaId of a
database. On the other hand, you use methods to perform actions on an
object, for example, the CreateDocument method of the database object
creates a document in a given database.

Conceptually, there are two types of objects. They are:

• Front-end UI (user interface) objects

• Back-end (server) objects

Domino Front-End UI Objects
Front-end UI objects are used to manipulate the current user interface. They
are typically used for programming events and give you access to the
Domino object that the user is currently working on. The following front-end
UI objects are available:

• NotesUIWorkSpace represents the current Notes workspace window.

• NotesUIDatabase represents the currently used database.

• NotesUIView represents the currently used view.

• NotesUIDocument represents the document that is currently open.

The following objects have only events associated with them:

• Button represents a button.

• Field represents a field.

• Navigator represents a navigator.

Chapter 10: Programming for Domino 277

Domino Back-End Objects
Domino back-end objects are used for manipulating Domino data. They do
not support any event or user interface interaction. Nevertheless, you can
combine back-end objects with front-end objects in UI scripts. For example,
the NotesUIDocument object has a property called Document which provides
access to the underlying document.

The following back-end objects exist:

• NotesSession

Represents the Domino environment of the current script, providing
access to environment variables, Domino directories, information about
the current user, and information about the current Domino platform
and release number.

• NotesDbDirectory

Represents the Domino databases on a specific server or local machine.

• NotesDatabase

Represents a Domino database.

• NotesACL

Represents the Access Control List (ACL) of a database.

• NotesACLEntry

Represents a single entry in an Access Control List. An entry may be for
a person, a group, or a server.

• NotesAgent

Represents an agent.

• NotesView

Represents a view or folder of a database and provides access to
documents within it.

• NotesViewColumn

Represents a column in a view or folder.

• NotesDocumentCollection

Represents a collection of documents from a database, selected
according to specific criteria.

• NotesDocument

Represents a document in a database.

278 Lotus Domino Release 5.0: A Developer’s Handbook

• NotesItem

Represents a piece of data in a document. All of the items in a document
are accessible through LotusScript, regardless of what form is used to
display the document in the user interface.

• NotesRichTextItem

Represents an item of type rich text.

• NotesRichTextStyle

Represents the rich text field attributes.

• NotesEmbeddedObject

Represents embedded objects, linked objects, and file attachments.

• NotesDateTime

Represents a date and time. Provides a means of translating between the
LotusScript date-time format and the Notes format.

• NotesDateRange

Contains a range of NotesDateTime. An object of type NotesDateTime
represents a given date and time.

• NotesLog

Enables you to record actions and errors that take place during a scripts
execution. You can record actions and errors in a Notes database, a mail
memo, or a file (for scripts that run locally).

• NotesNewsLetter

Represents a document that contains information from, or doclinks to,
several other documents. All of the NotesItem properties and methods
can also be used on a NotesRichTextItem.

• NotesForm

Represents a form in a Notes database.

• NotesInternational

This object contains properties which provide information about the
international settings, for example, date format, of the environment in
which Domino is running.

• NotesName

Properties of this object contain information about a Domino user name.

• NotesTimer

Objects represent a timer in Domino.

Chapter 10: Programming for Domino 279

• NotesRegistration

Represents the creation or administration of an ID file.

• NotesOutline

Represents the Notes Outline attributes.

• NotesOutlineEntry

Represents an entry in a Notes Outline.

• NotesReplication

Represents the replication settings of a database.

• NotesRichTextParagraphStyle

Represents RichText paragraph attributes.

• NotesRichTextTab

Represents RichText tab attributes.

• NotesViewEntry

Represents a view entry. A view entry represents a row in a view.

• NotesViewEntryCollection

Represents a collection of view entries, selected according to specific
criteria.

• NotesViewNavigator

Represents a view navigator. A view navigator provides access to all, or
a subset of, the entries in a view.

280 Lotus Domino Release 5.0: A Developer’s Handbook

Object Hierarchy
There is a hierarchical relationship for Domino objects. Higher hierarchical
objects contain the lower ones. The figure below is an example of the
hierarchical relationship between a few of the Domino objects:

NotesSession

NotesDatabase

NotesView

NotesDocument

NotesItem

Each object has defined members, properties and methods. Using these
members, you can access other objects. The relationship of containment and
access means that the higher object has the property or the method to access
the lower one.

For example, you can see all the views when you open the database. This
means that the opened database(object) in the workspace includes the
views(object). Furthermore, you can see the documents when you select one
of the views. This means that your selected view(object) contains the
documents(object). This hierarchy is important when using Domino objects.
NotesSession is the top level object in the Domino Object Model. You can
work your way to any Domino object if you start from NotesSession.

Chapter 10: Programming for Domino 281

Using Domino Objects from LotusScript
We will now look at some examples of code which use objects in LotusScript.

Example 1: Getting the Text of the Subject Field

Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Dim item As NotesItem
Set db = session.CurrentDatabase
Set view = db.GetView("Main View")
Set doc = view.GetFirstDocument
Set item = doc.GetFirstItem("Subject")

First, we declare the variable session as types of NotesSession object, and New
is used to create an instance of that object.

We declare the variables db, view, doc, item as types of NotesDatabase,
NotesView, NotesDocument, and NotesItem objects, respectively.

To get the text of the subject field, we need to follow the hierarchical path
from the top to the lower one. In this example, we go from NotesSession
object to NotesItem object:

NotesSession - NotesDatabase - NotesView - NotesDocument - NotesItem.

We initialize the variable db with the property CurrentDatabase of the higher
level object.

We set the object variable view using the GetView method, giving it the name
of a view.

The next statements are the same as before: we use the methods
GetFirstDocument method to give us the first document from the view, and
GetFirstItem to get the subject field from the document.

282 Lotus Domino Release 5.0: A Developer’s Handbook

Example 2: Disabling a Role for a Person

Dim session As New NotesSession
Dim db As NotesDatabase
Dim acl As NotesACL
Dim entry As NotesACLEntry
Set db = session.CurrentDatabase
Set acl = db.ACL
Set entry = acl.GetEntry("Susan Preissler")
Call entry.DisableRole("Auditor")
Call acl.Save

To access the personal ACL (access control list) data for a database, you need
to follow the hierarchical path from the top class to the lower one. This
example steps from the NotesSession object to the NotesACLEntry object:

NotesSession - NotesDatabase - NotesACL - NotesACLEntry.

The object that you would like to manipulate has methods or properties to
handle its own data. The first seven lines of this example are similar to
Example 1. The eighth line uses the DisableRole method of the NotesACLEntry
object to disable the role [Auditor] for “Susan Preissler.”

Example 3: Getting the Subject Field of All Documents

Dim db As New NotesDatabase("Server","db.nsf")
Dim dc As NotesDocumentCollection
Dim doc As NotesDocument
Dim item As NotesItem
Dim subject As String
Set dc = db.AllDocuments
Set doc = dc.GetFirstDocument()

While Not(doc Is Nothing)
 Set item = doc.GetFirstItem("Subject")
 subject = item.text
 Set doc = dc.GetNextDocument(doc)

Wend

The earlier two examples start at the NotesSession object, but to access an
existing database when you know its server and file name, you can get the
database object directly as shown in the first line. This illustrates a unique
feature of writing Notes applications in LotusScript, as opposed to the
formula language: you can access any database from within a script, and
perform any function upon it.

Chapter 10: Programming for Domino 283

The following sequence is the same as in the earlier examples. The
NotesDatabase object contains the NotesDocumentCollection object, which
contains NotesDocument:

NotesDatabase - NotesDocumentCollection - NotesDocument - NotesItem.

We use the AllDocuments property of the NotesDatabase object to get all the
documents in the database.

Next, we use the GetFirstDocument method of the NotesDocumentCollection
object to get the first document in a collection.

We then use the GetNextDocument method of the NotesDocumentCollection
object to get the document immediately following the earlier document in a
collection. If a document does not exist in a collection, the GetNextDocument
method returns Nothing.

Understanding Front-end and Back-end Classes
First of all, you need to consider how data is stored in Domino. You can
think of a document within a Domino database as a record, but a Domino
document is more sophisticated than a typical database record. It may
contain rich text, pictures, objects, and many other types of information. For
example, if you access a Domino document using the back-end classes, you
may manipulate the contents of the fields, add new fields to the document,
or remove fields from the document. However, if you make such changes,
the input translation and input validation formulas contained in a form are
not executed.

On the other hand, if you work with front-end objects of Domino, your
changes to the fields are visible to the user. For example, if you invoke the
Refresh method of the NotesUIDocument class, the input translation and
input validation formulas are carried out.

284 Lotus Domino Release 5.0: A Developer’s Handbook

The following figure represents a back-end document and shows how data is
stored in a Domino database:

Document

contents of field1

Field1

contents of field2

Field2

Name of the form to be used
with document

Form

Susan

$UpdatedBy

The fields Field1 and Field2 have been defined in the form which was used to
create this document. The name of this form is stored in the field Form. If you
change the value of the field Form using an agent or LotusScript, the
document will be presented to the user using the other form when it is
opened the next time.

Note If there is no form field within a document, Domino will display such
a document using the database default form. If there is no default form, the
document cannot be displayed.

Field $UpdatedBy is an internal field created by Domino and contains a list of
users who have worked on this document.

Tip New for Domino R5.0, you can now specify the maximum amount of
user entries kept in this variable in the InfoBox of the database.

Note Mostly, field names starting with $ are used and maintained by
Domino.

Chapter 10: Programming for Domino 285

Using Domino Objects From Java
You can also access the Domino back-end objects from Java. This allows you
to write parts of your application in Java. The Java program runs on the
machine where Domino is installed. For example, Java agents can be written
that will manipulate Domino objects.

Note The Java classes are not a port of the LotusScript classes to Java.
Actually the same C++ code is executed, only the syntax of the interface is
different.

Programming With LotusScript
When you program in Domino, you write your LotusScript code to affect
Domino objects. Your code is executed by the occurrence of an event to the
objects; such as clicking a button, opening a document, closing a document,
or entering data in a field. Using the Objects view, you can easily see the
events that are available for an object.

For example, you can write a very simple script for an object such as a
button:

Sub Click(Source As Button)
 MessageBox("I'm learning LotusScript!")
End Sub

This script just shows a message box when you click the button.

The Event Model
Each programmable object in Domino has a list of associated events that it
responds to; for example, a button responds to an event called “click” that is
executed when the user clicks the button.

Another example of this is the postopen event of the form, which is triggered
when a user displays a document on their screen. The postopen event occurs
once all data has been loaded from the backend database into the form, and
just before it is displayed to the user.

Here, we will show you how to use the postopen event.

Using the Postopen Event
This next example adds an action to the Form (document) object and uses the
Postopen event.

Note You should try the following example by creating a temporary
database based on the Blank template, so as not to corrupt any existing
databases.

286 Lotus Domino Release 5.0: A Developer’s Handbook

1. After you have created a blank database, open it in Design mode.

2. Select the form design view and click New Form. The new form is
displayed.

3. Enter CREATOR: at the cursor blinking position.

4. Choose Create - Field. The InfoBox used to set the properties of a field
appears.

5. Enter Creator in the Name: field of the InfoBox and close the box.

6. Go to the Untitled (Form) in the Objects view.

7. Choose the Postopen event.

8. Edit the LotusScript so that it looks exactly like this:
Sub Postopen(Source As Notesuidocument)
 Dim session As New NotesSession
 If source.EditMode Then
 Call source.FieldSetText("Creator",
session.CommonUserName)
 End If
End Sub

9. Choose File - Save.

10. Enter LotusScript1 as the form name and click OK.

Chapter 10: Programming for Domino 287

Running the Example
There are two alternative options to test the form. You can do either of the
following

• Click Design - Preview in Notes.

• Domino opens the current form and shows its contents.

Note This only lets you run the form you are working on. If you want to
test the whole application, it is better to open the current database.

or

• Select the database to which you added the script.

• Choose Create - LotusScript1.

The new form LotusScript1 appears and your name is set in the creator field.

This script runs after the user opens the document. If the document is new,
the Creator field is set to the name of the creator. You can select any events
mentioned earlier and write a script. For example, you can select the
QuerySave event to check whether or not every field has a value entered in it
before the document is saved.

Event Type and Sequence
Below, we describe the event for each object in Domino.

Field Object
The Field object has the following events where you can write
LotusScript. Other events are available for JavaScript or Formula:

288 Lotus Domino Release 5.0: A Developer’s Handbook

• (Options) (Provided area for LotusScript options)

• (Declarations) (Declare all global variables)

Note In the above two events, you can’t write executable LotusScript
statements

• Initialize (When it is being loaded)

• Entering (When the cursor is moved to the field in edit mode)

• Exiting (When the cursor is moved out of the field edit mode)

• Terminate (When it is being closed)

Example
We will now add an action to a Field object and use the Exiting event.

Note You should try the following example by creating a temporary
database to avoid corrupting any existing databases. You could use the
database that you used in the first example.

1. Select the database and then the Form design view. Next, click New
Form in the programming view. The form design window is opened and
the cursor is blinking at the top left-hand side.

2. Enter TEL: at the cursor blinking position.

3. Choose Create - Field. The InfoBox appears.

4. Enter TEL in the Name: field of the InfoBox.

5. Create one more field. You don’t need to change the name in the InfoBox
— you can leave it as Untitled. When we go to this field later, we will
exit from the TEL field, which will cause the exiting event to occur.

6. Choose TEL (Field) from the Objects view and choose Exiting event.

7. Edit the LotusScript so that it looks exactly like this:
Sub Exiting(Source As Field)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = ws.CurrentDocument
 tel = uidoc.FieldGetText("TEL")
 If tel = "" Then
 While tel = ""
 tel = Inputbox("Enter your telephone number")
 Wend
 Call uidoc.FieldSetText("TEL", tel)
 End If
End Sub

Chapter 10: Programming for Domino 289

8. Choose File - Save. Enter LotusScript2 as the form name and click OK.

Running the Example
1. Select the database to which you added the script.

2. Choose Create - LotusScript2. The new form LotusScript2 appears.

3. Select the second field without entering any data. A message box
appears which asks you to enter your telephone number.

This script runs when the user exits from the TEL field. The script makes
sure that the user enters a telephone number.

Button Object
The Button object has the following events:

• (Options) (Provided area for LotusScript options)

• (Declarations) (Declare all global variables)

Note In the above two events you can’t write executable LotusScript
statements.

• Initialize (When it is being loaded)

• Click (When it is selected)

• ObjectExecute (See note below)

• Terminate (When it is being closed)

290 Lotus Domino Release 5.0: A Developer’s Handbook

Note The ObjectExecute event is primarily used in external applications
and should not be used in the Notes environment.

Example
We will now add an action to a Button object and use the Click event.

Note You should try the following example by creating a temporary
database so as not to corrupt any existing databases.

1. Select the database and then the Form design view and click New Form.
The form design window is opened and the cursor is blinking at the top
left-hand side.

2. Enter CHARACTER: at the cursor blinking position.

3. Choose Create - Field. The InfoBox appears.

4. Enter Character in the Name field in InfoBox.

5. Set the cursor position just to the right side of the Character field.

6. Choose Create - Hotspot - Button. A button is placed on the form, and
the InfoBox for the button appears.

7. Inside the InfoBox, enter Clear in the Button label.

Chapter 10: Programming for Domino 291

8. Choose Clear (Button) from the Objects view.

9. Edit the sub so that it looks exactly like this:
Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = ws.CurrentDocument
 If (uidoc.FieldGetText("Character") <> "") Then
 Call uidoc.FieldClear("Character")
 End If
End Sub

10. Choose File - Save. You are asked to specify a form name for the new
form.

11. Enter LotusScript3 as the form name and click OK.

Running the Example
1. Select Design - Preview in Notes. The new form LotusScript3 appears.

2. Enter some characters in the field, then click Clear. The characters you
entered are cleared.

Action Object
The Action object has the following events:

• (Options) (Provided area for LotusScript options)

• (Declarations) (Declare all global variables)

Note In the above events you cannot write executable LotusScript
statements.

• Initialize (When it is being loaded)

• Click (When it is selected)

• ObjectExecute (See note below)

• Terminate (When it is being closed)

Note The ObjectExecute event is primarily used in external applications
and should not be used in the Notes environment.

292 Lotus Domino Release 5.0: A Developer’s Handbook

Using LotusScript in Web Applications
Domino also allows you to run your LotusScript code in Web applications,
but there are a few limitations. Usually you use LotusScript to develop
agents which you will call from the WebQueryOpen and WebQueryClose
events. LotusScript agents can only run on the Domino server, not within the
Web browser.

How Scripts and Formulas Are Executed
If your application contains a combination of LotusScript and the formula
language, it is useful to know the order in which the events and formulas in
a form are executed.

The following example lists the order in which LotusScript events and
Domino formulas in a single forms design are executed, during a number of
activities. The list was generated by embedding message box commands or
@prompt formulas into all the possible events and formulas on a test form
containing different field types. The form does not include all the possible
field types or evaluation combinations. By studying the results in this
example, however, you may be able to better understand the order of
execution in the forms of your own application.

The test form contains five fields from top to bottom, in the following order:

• Subject - Editable/Text Field - (with Default Value, Input Translation
and Input Validation Formulas).

• From - Computed When Composed/ Authors Name Field - (with Value
Formula).

• Counter - Computed/Number Field - (with Value Formula).

• DisplayNum - Computed For Display/Number Field - (with Value
Formula).

• Body - Editable/RTF Field - (with Default Value Formula).

Chapter 10: Programming for Domino 293

The following tables show you different activities, such as composing a
document, and the order in which the LotusScript events and Domino
formulas are executed for each activity.

Composing a Document

PostOpen EventForm

Entering EventSubject Field

Initialize EventBody Field

Value FormulaBody Field

Initialize EventDisplayNum Field

Value FormulaDisplayNum Field

Initialize EventCounter Field

Value FormulaCounter Field

Initialize EventFrom Field

Value FormulaFrom Field

Initialize EventSubject Field

Default Value FormulaSubject Field

Query Open Event/WebQuery Open
Event

Form

Window Title Form

Initialize EventForm

Formula or EventObject

Saving a Document Using @Command([FileSave]) or File - Save

Input Validation FormulaSubject Field

Value FormulaDisplayNum Field

Value FormulaCounter Field

Input Translation FormulaSubject Field

QuerySave EventForm

Formula or EventObject

294 Lotus Domino Release 5.0: A Developer’s Handbook

Closing the Window using @Command([FileCloseWindow]) or File - Close

Terminate EventSubject Field

Terminate EventDisplayNum Field

Terminate EventCounter Field

Terminate EventFrom Field

Terminate EventSubject Field

Terminate EventForm

QueryClose Event / WebQuery Close
Event

Form

Formula or EventObject

Reopening the Document in Read Mode

PostOpen EventForm

Initialize EventBody Field

Initialize EventDisplayNum Field

Value FormulaDisplayNum Field

Initialize EventCounter Field

Initialize EventFrom Field

Initialize EventSubject Field

Query Open Event / WebQuery Open
Event

Form

Window Title FormulaForm

Initialize EventForm

Formula or EventObject

Toggling from Read Mode to Edit Mode with Document Open

PostModeChange EventForm

Entering Event (depends on cursor)Subject Field

QueryModeChange EventForm

Formula or EventObject

Toggling from Edit Mode to Read Mode with Document Open (No Changes)

PostModeChange EventForm

QueryModeChange EventForm

Formula or EventObject

Chapter 10: Programming for Domino 295

Toggling from Edit Mode to Read Mode with Document Open (Saving Changes)

Same sequence as for reopening a document in
read mode

Same sequence as for closing a document

QueryClose Event / WebQueryClose
Event

Form

PostModeChange EventForm

Same sequence as for saving a document

QueryModeChange EventForm

Formula or EventObject

Moving Cursor From One Editable Field to Another

Entering EventSecond field

Exiting EventFirst field

Formula or EventObject

Refreshing Fields While in Edit Mode (F9)

PostRecalc EventForm

Input Validation FormulaSubject Field

Value FormulaDisplayNum Field

Value FormulaCounter Field

Input Translation formulaSubject Field

Formula or EventObject

296 Lotus Domino Release 5.0: A Developer’s Handbook

Sequence of Events in a Complex Example
The following picture shows the sequence of events in a form which contains
a subform:

Globals
1 Initialize 17 Terminate

Form
2 Initialize 3 QueryOpen 9 PostOpen

11 QueryClose 13 Terminate

Field1
4 Initialize 8 Entering 14 Terminate

Subform
5 Initialize 6 QueryOpen

10 Postopen 12 QueryClose 15 Terminate

Field2
7 Initialize 16 Terminate

Here is the sequence of events when the document is opened:

1. Initialize of Globals

2. Initialize of Form

3. Queryopen of Form

4. Initialize of Field1 (contained in Form)

5. Initialize of Subform

6. Queryopen of Subform

7. Initialize of Field2 (contained in Subform)

8. Entering of Field1

9. Postopen of Form

10. Postopen of Subform

This is the list of events when the document is closed:

1. Queryclose Form

2. Queryclose Subform

3. Terminate Form

4. Terminate Field1

Chapter 10: Programming for Domino 297

5. Terminate Subform

6. Terminate Field2

7. Terminate Globals

LotusScript Programming Tips and Considerations
The following section will give you some help in structuring your
LotusScript code for event programming within Lotus Domino.

General Suggestions
Do any or all of the following to improve your scripts:

• Declare all variables in the global definitions for an object and use the
Option Public statement. Next, instantiate the variables in the PostOpen
event or in a subroutine that you can call from either the QueryOpen
event (for an existing document), or the PostOpen event (for a new
document). Your variables will be easier to find and maintain, and you’ll
be able to use them in any script for the object. You also might consider
using Option Declare to make certain that you have declared all the
variables in your application.

• Store subroutines and functions in the global definitions for a form or
navigator. Then you can use the subroutines or functions with any object
on the form or navigator.

• To reuse a segment of script in multiple scripts, put the segment into a
function or subroutine or use script libraries (see section on script
libraries further on in this chapter).

• Try not to nest subroutine calls or conditionals deeper than three levels.
Nesting to too many levels makes scripts hard to follow.

• To debug a script that runs on a shared field, insert the field into a
temporary form so that you’ll have a place from which to run the
debugger.

• In Initialize and Terminate events in forms, fields, actions, and buttons,
avoid using the uidoc variable for the NotesUIDocument class. A
document object may not be available to access (for example, a
document window may not be open) at the time the script runs.

For complete information on LotusScript, see the online Lotus Notes Help
information or the Programmer’s Guide.

298 Lotus Domino Release 5.0: A Developer’s Handbook

Use Consistent Variable Names
The Domino templates use a set of standard variable names, as shown in the
table below. For example, in the Domino templates the variable note always
refers to the current back-end document.

Continued

logNotesLog

dbdirNotesDbDirectory

agentNotesAgent

aclentryNotesAclEntry

aclNotesAcl

Consider using for comparing dates.date1, date2,
…

NotesDateTime

An alternative to using the variable name
responses. Use if you’re using child as
the NotesDocument object variable.

children

Use if you are working within one
collection of responses to the current
document.

responses

documentsNotesDocumentCollection

embobjNotesEmbeddedObject

rtitemNotesRichTextItem

itemNotesItem

A profile document from which you are
retrieving processing parameters.

profile

A child of the current document.child

The parent of the current document.parent

Refers to the data associated with the
current document.

noteNotesDocument

columnNotesViewColumn

viewNotesView

dbNotesDatabase

sessionNotesSession

CommentsObject
Variable

Class Name

Chapter 10: Programming for Domino 299

To use, set uidoc = source in PostOpen.
Then you can use this object variable in
field and action scripts in the form.

uidoc

Already an argument to the form events
— using this name keeps your scripts
consistent.

sourceNotesUiDocument

wsNotesUiWorkSpace

CommentsObject
Variable

Class Name

Using these names in your own scripts makes them easy to read and
understand, keeps them consistent, helps you maintain them more easily,
and may help to share the code with other developers.

Consider using all lowercase for object variables and a combination of
lowercase and uppercase, for example VariableName, for other variables.

When passing values to a subroutine or function, use the same variable
names in the called routine as in the calling routine. For example, don’t call
something StatusNumber in one and StatNo in the other. Consistent naming
ensures that others can easily read and understand the script.

Reserved Fields
There are some reserved fields in Domino that you can use to automatically
add functionality that you need to otherwise program yourself. If you try to
use a reserved name differently, or redefine the field, Domino displays an
error message.

The following table displays all the reserved fields for mailing documents:

Routes mail via cc:Mail.MailFormat

Returns a receipt when recipient reads mail.ReturnReceipt

Returns a report when mail is delivered to recipient.DeliveryReport

Delivers mail high, medium, or low priority.DeliveryPriority

Send blind copy to users which are listed in field.BlindCopyTo

Sends copy to users listed in field.CopyTo

Sends mail to users listed in field.SendTo

Encrypts mail.Encrypt

Controls whether documents are saved when mailed.SaveOptions

Sign creator’s name to prevent tampering.Sign

Gives users the option of mailing a document.MailOptions

DescriptionReserved Field Name

300 Lotus Domino Release 5.0: A Developer’s Handbook

The next table displays all the reserved fields for general use:

Encrypts documents with secret, rather than public,
encryption keys.

SecretEncryptionKeys

Puts new documents in folders.FolderOptions

Controls version tracking for documents.$VersionOpt

Categorizes documents.Categories

DescriptionReserved Field Name

Example
When a document with its contents changed is being closed, a dialog box is
presented to the user asking whether the changes should be saved or not.
Setting SaveOptions to “0” before closing the document prevents the dialog
from being displayed. Thus, the document is closed with all changes
discarded.

Using Script Libraries
A script library is a place where you can store code segments that you want
to use from other scriptable objects. You may code options, declarations, an
initialize subroutine, a terminate subroutine, and user scripts.

To create a new Script Library, choose Resources - Script Library design
view in Domino Designer and click New Script Library. The new Script
Library is created. You can write the code inside the initialize and terminate
subroutine, or you can create your own subroutines. To do so, write a
statement such as Function or Sub in an existing script. The editor
automatically creates a new script and transfers your code there.

Chapter 10: Programming for Domino 301

The figure below shows the Discussion Routines script library in the
TeamRoom database, which contains GetDbPath and InstatiateObjects
subroutines:

To incorporate a script library into a scriptable object, enter a Use statement
in the (Options) script for the object or for the (Globals) object. You can see
how script libraries are used in the TeamRoom database by opening the
SendReminder agent.

Use "DiscussionRoutines"

The name is not case-sensitive and should not contain spaces. Specify the
name as a character literal or named constant.

302 Lotus Domino Release 5.0: A Developer’s Handbook

The picture below shows how the SendReminder agent (ReminderDoneMsg
subroutine) uses the GetDBPath routine of the DiscussionRoutines script
library:

The code in the (Options), (Declarations), Initialize, and Terminate scripts of
the library becomes available as though it were in the current objects
corresponding scripts. User scripts in the library become available as though
they were in the current object.

Using a Template Database
When you are developing a Domino application, you usually use a lot of the
same code that you have used before for performing standard procedures.
Many different applications contain the same procedures, for example,
removing extra spaces in a field, creating a chart in the field, and so on.

It is very useful to use the Template databases where you can store the most
commonly used Lotus Script, Java Script and Java code, actions and buttons,
and other commonly used functions. It is better than using cut and paste
because if you need to change the code, for example, you need to add new
Lotus Script code to manipulate a field, you only need to add the code in one
place and then the updated code is used in each application that references it.

Chapter 10: Programming for Domino 303

The next figure shows this process diagramatically:

Sub ExtraSpaces
Dim session as New NotesSessoin
Dim db as NotesDatabase
...
end sub

Sub ExtraSpaces
(LotusScript)

Sub ExtraSpaces
(Script Library)

Sub ExtraSpaces
(Script Library)

Form Form

Action

Form Form

Template-
database

Database1 Database2
Database3

1.

2.

3.

4.

1. The Template database contains a lot of commonly used code, actions,
shared fields, and so on. Sub ExtraSpaces is one Script Library code
segment which removes all the extra spaces in the current field.

2. The ExtraSpaces class is used in three databases and it is copied to each
database.

Note When you use the copy and paste options, Domino automatically
asks you if you want to inherit the changes from the Template database
when the ExtraSpaces Script Library changes.

3. The ExtraSpaces Script Library is now stored in each database.

Updating the ExtraSpaces Subroutine
When you want to update the elements or code segments, you only need to
make changes in the Template databases. For example, you need to add
some more code into the ExtraSpaces Script Library.

1. Open the Template database and go to the ExtraSpaces code segment.

2. Make the required changes and save the ExtraSpaces Script Library.

3. If you have selected the Inherit options, and the Database1, Database2,
and Database3 are on the same server as the Template database, Domino
automatically runs the inherit program. The server will refresh the
databases overnight. You can also run the refresh commands manually
by selecting the database that you want to refresh and then selecting File
- Database - Refresh Design.

304 Lotus Domino Release 5.0: A Developer’s Handbook

4. After the refresh, Database1, Database2, and Database3 will have the
new updated version of ExtraSpaces Script Library.

Catching Errors at Compile Time
Specifying Option Declare in the (Options) event of the object forces you to
declare variables explicitly. With this option in effect, any undeclared
variables will be flagged during compile time. This is useful if you design
large applications and it prevents your having to search for typing errors.

Improving Form Performance
A form that performs well is one that Domino can calculate quickly for
display, so that documents created with the form are more likely to open
quickly.

To improve form performance, do any or all of the following:

• Avoid overusing hide-when formulas on forms. Each formula that
Domino must calculate when opening a form slows the application
down. Before you use a hide-when formula, try using a computed
subform or a hide-when condition, such as “Hide when editing” or
“Hide when reading.”

• If you must use hide-when formulas to hide buttons on an Action bar,
use @Command([RefreshHideFormulas]) or the LotusScript
RefreshHideFormulas method in the action formulas or scripts to force
calculation of the hide-when formulas. This closely correlates the
appearance of different buttons with users’ button clicks, and allows
each calculation to occur only when needed.

• If a form has keyword fields (for example, in a layout region), and you
want formulas to calculate based on changes in those fields (for example,
hide-when formulas that progressively disclose items in the layout
region) select the “Refresh fields on keyword change” option instead of
the “Auto refresh fields” option. Domino performs more calculations
when “Auto refresh fields” is enabled; for example, it refreshes all
formulas every time a user moves between keyword fields, instead of
just when values in keyword fields change.

• Remove infrequently used items from a form. For example, redesign
your application to display infrequently used items in a dialog box.

• Consider limiting, or eliminating entirely the use of shared fields or
subforms on any form that must open quickly.

• Minimize the number of fields per form, because each field is calculated
when a document is opened, refreshed, or saved. After your design is
complete, run an agent to remove any blank, unused fields.

Chapter 10: Programming for Domino 305

• Consider putting field formulas into form events rather than into the
fields themselves, so that you can more easily control which formulas
are calculated at each event. Don’t use hidden fields for processing
events unless you have to.

If your application was created in Release 3.x, it may include forms with
hidden fields containing formulas that process a document when it’s opened
or saved. To improve the performance of the application, convert the
formulas to LotusScript, and use the PostOpen and QuerySave form events.

When to Use Formulas and LotusScript
In general, formulas are best used for working within the object that the user
is currently processing, for example, to return a default value to a field or to
determine selection criteria for a view. Scripts are best used for accessing
existing objects, for example, to change a value in one document based on
values in other documents. Scripts provide some capabilities that formulas
do not, such as the ability to manipulate RichText fields. Formulas provide
better performance in some situations and may be more convenient for
simple applications.

When you’re ready to use both, deciding whether to use LotusScript or the
Domino formula language for a given task usually depends on the
complexity of the task. Consider these questions when making your
decision:

• Do you need to process a quantity of data?

A formula that “touches” many databases or documents using
@functions must rely on the Notes user interface to access each
document, whereas LotusScript accesses the documents more efficiently
and quickly.

For example, LotusScript is a good tool for creating an agent that scans
all the databases on your workspace and returns information such as
size of database, percent used, number of documents, and so on.
LotusScript is also a good tool for running a full-text search on multiple
documents and performing an action with the results of the search.

• Are you using Domino object model front-end or back-end classes?

Domino object model (front-end classes) use the same Domino code as
their equivalent @commands, so LotusScript won’t perform better than
the formula language when you use these classes. The database
(back-end) classes, however, use different code, and perform more
quickly than the equivalent @functions.

For example, avoid using the front-end class NotesUIDocument to
perform many field updates. The back-end class NotesDocument is
much faster, and allows you to assign data types (including rich text)

306 Lotus Domino Release 5.0: A Developer’s Handbook

and to add new (hidden) fields. The front-end class allows you to update
only fields that already exist on the form, and it allows you to insert only
text in the field, as @Command([EditInsertText]) does.

In addition, the front-end classes will not work in scheduled agents run
by a server, only in agents run from a user’s workstation (for example,
from the menu).

• Are you using CORBA applets?

Domino object model (back-end classes) support the CORBA applets.
This is useful if you are planning to develop Web applications which use
the CORBA applet to display information to browser users.

• Do you need to manipulate the currently selected object?

Use the formula language instead of LotusScript.

• Do you need to program buttons on an Action bar?

Consider using the formula language instead of LotusScript. Button
actions are usually simple and perform tasks usually accomplished
directly through the Notes user interface, such as saving or closing a
document.

• Do you need to return the default value to a field?

Use the formula language instead of LotusScript.

• Do you need to return the title of a window?

Use the formula language instead of LotusScript.

• Do you need to control a work flow process from a form?

LotusScript is best for controlling workflow with form events, especially
the QuerySave event, because it can handle the more complex tasks you
may want to accomplish, such as looping and setting multiple variables.

For example, you can require a user to fill out fields on a form in a
predetermined order by manipulating enter and exit field events, or you
may prevent a user from opening, saving, or editing a form until certain
conditions are met.

• Are you including too many @functions in one formula?

If a formula includes many @functions in sequence, try changing the
formula to LotusScript. However, formulas that need only a single
@function, such as @Command[FilePrint], are more efficient and
perform better than scripts that do the same thing.

• Do you have to use a lot of if-then-else or for- and while-loops ?

Use LotusScript instead of formulas because your code will be easier to
maintain. Furthermore, formulas don’t support loops.

Chapter 10: Programming for Domino 307

Using the Evaluate Function to Combine LotusScript and Formulas
Use the Evaluate function in LotusScript to combine pieces of formula
language with LotusScript. This allows you to make your scripts leaner
wherever @functions do something in fewer lines than LotusScript does.
Keep in mind that including formulas in scripts may make the scripts easier
to write, but won’t necessarily improve performance.

You can use Evaluate to include any @functions except the ones that directly
interact with the Notes user interface, such as @Prompt, @DialogBox,
@PickList, and @Command. A couple of particularly useful @functions to
combine with LotusScript are:

• @Name, which lets you manipulate hierarchical names.

• @Replace, which pulls a value from a text list without requiring the
looping that LotusScript would demand.

• @Unique, which removes duplicates from a text list.

• @Subset, which reads the list from left to right.

You can also combine LotusScript and formulas in an application by using
them in different parts of the same form.

Evaluate Function in LotusScript
The Evaluate function executes a LotusScript formula.

Syntax:
Evaluate(macro [, object])

Elements:
macro

Mandatory. The text of the Notes macro, in the syntax that Domino
recognizes. Refer to the Domino documentation for the correct syntax of the
macro.

Note The macro text must be known at compile time, so use a constant or
string literal. Do not use a string variable.

object

Optional. (If the macro requires a Notes object)

Example:

Evaluate("@Sum(Numlist)", ...)
or
Const NotesMacro$ = "@Sum(NumList)"
Evaluate(NotesMacro$, ...)

308 Lotus Domino Release 5.0: A Developer’s Handbook

The next example is incorrect because a string variable is used.

NotesMacro$ = "@Sum(NumList)"
Evaluate(NotesMacro$, ...)

Return Value
If the macro being run returns a value, the Evaluate function returns a Variant
containing that value. Otherwise, the function does not return a value.

Sample Code
This script runs when the user exits from the Subject field and changes the
characters to proper case.

Sub Exiting (Source As Field)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim eval As Variant
 Set uidoc = ws.CurrentDocument
 Set doc = uidoc.Document
 eval = Evaluate("@ProperCase(Subject))", doc)
 Call doc.ReplaceItemValue("Subject", eval)
End Sub

In this example, we use the Evaluate function to get @ProperCase carried out.
Parameters to the Evaluate function are the string containing the @function
and the field name, as well as the object that contains the field.

Tip Since in the above example, the variable uidoc is only used to get the
object of the next lower class, you may also write Set
doc=ws.CurrentDocument.Document to initialize variable doc.

Making Field Value Changes Effective
There are two ways of making changes to field values effective in your
LotusScript programs.

You can use the Refresh method of the NotesDocument class. It has the same
effect as using the Refresh key on the Lotus Notes user interface.

When you modify “ReplaceItemValue” or remove “RemoveItem” fields in a
document in your LotusScript program, you need to use the Reload method of
the NotesDocument class to make the changes effective in the Lotus Notes user
interface. The following statements are examples to show the Reload method.
Postopen(Source As Notesuidocument)
 note.RemoveItem("Action")
 note.RemoveItem("SaveOptions")
 note.ReplaceItemValue("Action","Approve")
 source.Reload

Chapter 10: Programming for Domino 309

Note You usually add the following statement at the initialization stage of
your program to improve performance, as it stops the screen refreshing each
time you update a field. Remember to manually invoke the Reload method
in your programs when you use this statement.
source.AutoReload = False

NotesDocument NotesUIDocument

DominoDatabase

Save Reload

Save

Using Validation Formulas and QuerySave
If you are using Input Translation and Input Validation formulas along with
QuerySave, be sure to do a refresh (source.Refresh) at the beginning of the
script for the QuerySave event. The reason for doing this is that the
QuerySave event occurs before Notes refreshes the document when saving.

You want QuerySave to have the properly validated data to process. For
example, you don’t want QuerySave to process an empty field, because a
validation formula that would have flagged the field as empty hasn’t yet
run.

Working With a Rich Text Item and Rich Text Style
The NotesRichTextItem class inherits from NotesItem class. Therefore, you
may use GetFirstItem of the NotesDocument class to access the rich text
item. Of course, you also may use methods of NotesRichTextItem, for
example GetFormattedText. However, when a rich text item is the return
value of a method such as GetFirstItem in NotesDocument, do not declare it
with a Dim statement as NotesRichTextItem or NotesItem. If you declare it
as a NotesRichTextItem object, a “type mismatch” error will occur during
runtime. If you declare it as NotesItem object, you cannot use the
NotesRichTextItem properties and methods; a “not a member” error occurs
at compile time. The solution is to declare it as a variant, and then check to
see what type of object is retrieved. If it is a rich text item then you can
perform rich text functions on it.

310 Lotus Domino Release 5.0: A Developer’s Handbook

In the following example, you will create a document using the back-end
classes and import the first 300 characters of a file stored on your
workstation into the document body field. Furthermore, you will set the font
for the body field to Courier and the text size to 14 points.

To do this, follow these steps:

1. Create a file, for example Readme.txt, and save it in the root directory of
your C-drive.

Note Create the Readme file with at least 300 characters in it.

2. Create a new Blank Database.

3. Create a form where you want to insert this information.

4. Create a page containing a button (code will be written into the button).

5. Create a view which contains all new documents.

6. Modify the database properties so that the page opens when the
database is opened.

Next, create a blank database.

7. From the menu, choose File - Database - New.

8. Give the Title of the Database: Rich Text Style. Give the name of the
database: RichStyle.nsf

9. Set the Servers field to Local (where the database is about to be saved)
and the template to be a -Blank-.

10. Click OK. The new database is displayed. Select the database in your
workspace if it is not already selected, and choose View - Design. The
database is now shown in Design mode.

Next, you must create a form where you want to put that information.

1. Go to the Forms Design view and click New Form. A new form is
displayed.

2. Name the form Sample1 (You will use that name in LotusScript when
you are creating a new document).

3. Type something in the form (don’t use the Courier 14 font type).

4. Insert a Rich Text field and name it Body.

5. Save the form.

Chapter 10: Programming for Domino 311

Next, create a page to contain a button.

1. Go to the Page design view and click New Page: the new page is
displayed.

2. Create a button, open the InfoBox if it is not open, and enter a label for
the button: “Create Document”.

3. Go to the Objects view and select the click event.

Now, add the following code in the click event:
Sub Click(Source As Button)
'**First we read and import the contents of
Readme.txt-file, first 300 characters

'**Freefile() returns an unused file number
fileNum% = Freefile()
'**Opens a readme-file
Open "C:\Readme.txt" For Input As fileNum%
'**When file is opened we read first 300 characters

in txt-temporary variable
txt$ = Input(300, fileNum%)

'**Second code declares the Notes session and RichTextStyle
Dim session As New NotesSession
Dim richStyle As NotesRichTextStyle
Set richStyle = session.CreateRichTextStyle
'**Document uses the following styles: Courier, 14
richStyle.NotesFont = FONT_COURIER
richStyle.FontSize = 14

'**Third code declares the database and create a new
document.

Dim db As NotesDatabase
Set db = session.CurrentDatabase
Set doc = db.CreateDocument
'**Give the name for the form
doc.Form = "Sample1"
doc.Creator = session.CommonUserName
'**Declares a new Rich Text Item named Body
Set notesRichTextItem = New NotesRichTextItem(doc ,

"Body")
'**RichTextItem rendered using that style's

attributes until another style is appended.
Call notesRichTextItem.AppendStyle(richStyle)
'**Set the txt$ value in the RichTextitem
Call notesRichTextItem.AppendText(txt$)
Call doc.Save(True, False)
'**Message box tells that document is saved
Messagebox("The Sample Document is created")

End Sub

4. Save the page.

312 Lotus Domino Release 5.0: A Developer’s Handbook

Next, create a view which contains all the new documents that you are about
to create.

1. Go to the Views design view and double-click the (untitled) view.

2. Open the views InfoBox and give the view a name, for example,
ViewSamplel.

3. Next, go to the first column and select the Creator in the field on the
Programmer’s Pane.

4. Save the View.

Next you must modify the database InfoBox launch tab. You want the page
to open when a user opens the database. To do this, follow these steps:

1. Open the database InfoBox and click the Launch tab.

2. On the database open field, select Open Designated Navigator.

3. Type of Navigator field select Page and then in the Name field select the
PageSample1.

4. Close the InfoBox.

You have now created a small application, which contains a page, button,
view, and form.

Note The drawback of using the NotesRichTextStyle class with existing rich
text fields is that updates to such fields are not visible to the user
immediately. In order to see the rich text that has been added, the user must
first save the document, then quit out of the document and then reopen it.

Running the Sample
To run the sample all you need to do is open the database. When you do
that, the page you created opens and the view will be displayed on the right
side of the page (ViewSample1).

Click the button to start your LotusScript code, which displays a message
box to tell you that the application has created a document.

Close the message box and press F9 to refresh the view, and you will see the
new document.

Double-click the document and you will see that the Body field now contains
the text of the readme file and the style is Courier 14.

Chapter 10: Programming for Domino 313

New Domino Objects in Domino R5.0
The next table summarizes the new LotusScript libraries and constants in
Domino R5.0:

Continued

IsHierarchical
IsConflict
RowLines
HeaderLines
Spacing
IsModified
BackgroundColor
IsCategorized
ColumnCount
TopLevelEntryCount
GetAllEntries

propertiesNotesView

InitIMAP4Mail
GetFirstProfileDoc
GetNextProfileDoc

methods

FolderReferencesEnabled
MaxSize
ReplicationInfo

propertiesNotesDatabase

FolderReferences
IsDeleted

propertiesNotesDocument

CreateRichTextParagraphStylemethods

NotesBuildVersionpropertiesNotesSession

LIBRARIES

Libraries/ConstantsTypeDomino Objects

314 Lotus Domino Release 5.0: A Developer’s Handbook

Continued

IsCaseInsensitiveSort
IsAccentInsensitiveSort
FontFace
FontStyle
FontColor
FontPointSize
NumberDigits
NumberFormat
NumberAttrib
DateFmt
TimeFmt
TimeZoneFmt
TimeDateFmt
Flags1
Flags2
IsField
IsFormula

IsSecondaryResortDescending

DataType
ListSep
Alignment
HeaderAlignment
IsSortDescending
IsHideDetail
IsIcon
IsResize
IsResortAscending
IsResortDescending
IsShowTwistie
IsResortToView
IsSecondaryResort

propertiesNotesViewColumn

GetFirstEntry
GetLastEntry
GetNextEntry
GetPrevEntry
GetNthEntry
GetNextSiblingEntry
GetPrevSiblingEntry
GetParentEntry
GetChildEntry
GetEntryByKey
GetAllEntriesByKey

methods

Libraries/ConstantsTypeDomino Objects

Chapter 10: Programming for Domino 315

Continued

SetTab
ClearAllTabs
SetTabs

methods

Alignment
InterLineSpacing
SpacingAbove
SpacingBelow
LeftMargin
RightMargin
FirstLineLeftMargin
Pagination
Tabs

propertiesNotesRichTextParagraphStyle

PassThruHTMLpropertiesNotesRichTextStyle

AppendParagraphStyle
AddPageBreak

methodsNotesRichTextItem

UserType
Flags
CanCreateLSOrJavaAgent
IsServer
IsPerson
IsGroup
CanCreateSharedFolder
IsAdminReaderAuthor
IsAdminServer

propertiesNotesACLEntry

InternetLevelpropertiesNotesACL

AddDocument
DeleteDocument
GetDocumentByID
Contains

methodsNotesDocumentCollection

Trigger
Target
IsNotesAgent
IsWebAgent

propertiesNotesAgent

Libraries/ConstantsTypeDomino Objects

316 Lotus Domino Release 5.0: A Developer’s Handbook

Continued

GetFirstEntry
GetLastEntry
GetNextEntry
GetPrevEntry
GetNthEntry
RemoveAll
UpdateAll
StampAll
PutAllInFolder
RemoveAllFromFolder
FTSearch
AddEntry
DeleteEntry
GetEntryByID
Contains

method

Count
IsSorted
Query
Parent

propertiesNotesViewEntryCollection

GetPositionmethod

IsDocument
IsCategory
IsTotal
IsConflict
IsUnread
SiblingCount
DescendantCount
IndentalLevel
FTSearchScore
noteID
UniversalID
ColumnValues
Document
Parent

propertiesNotesViewEntry

Position
Type
Clear

propertiesNotesRichTextTab

Libraries/ConstantsTypeDomino Objects

Chapter 10: Programming for Domino 317

Continued

VC_DTNUMBER
VC_DTTIMEDATE
VC_DTTEXT
VC_ALIGN_LEFT
VC_ALIGN_RIGHT
VC_SEP_SPACE
VC_SEP_COMMA

constantsNotesViewColumn

NOTES_LIMITED_CLIENT
NOTES_DESKTOP_CLIENT
NOTES_FULL_CLIENT

constantsNotesRegistration

CONSTANTS

CutoffInterval
CutoffDate
Disabled
IgnoreDeletes
HideDesign
DoNotCatalog
CutoffDelete
NeverReplicate
Abstract
DoNotBrowse
NoChronos
IgnoreDestDeletes
MultiDbIndex
Priority

propertiesNotesReplication

New
ExecuteSetup

method

KnownNetworkPorts
ModemList
TCPHostName
TCPDomainName
TCPFullName
ProgressTitle
ProgressEnabled
ProgressLevel
StatusMessage
ErrorMessage
ErrorPath

propertiesNotesSetup

Libraries/ConstantsTypeDomino Objects

318 Lotus Domino Release 5.0: A Developer’s Handbook

DB_REPLICATION_PRIORITY_LOW
DB_REPLICATION_PRIORITY_MED
DB_REPLICATION_PRIORITY_HIGH
DB_REPLICATION_PRIORITY_NOTSET

constantsNotesReplication

ALIGN_LEFT
ALIGN_RIGHT
ALIGN_CENTER
ALIGN_FULL
ALIGN_NOWRAP
SPACING_ONE_POINT_50
SPACING_DOUBLE
PAGINATE_DEFAULT
PAGINATE_BEFORE
PAGINATE_KEEP_TOGETHER
PAGINATE_KEEP_WITH_NEXT
TAB_LEFT
TAB_DECIMAL
TAB_CENTER
TAB_RIGHT

constantsNotesRichTextParagraphStyle

TRIGGER_NONE
TRIGGER_SCHEDULED
TRIGGER_NEW_MAIL
TRIGGER_DOC_PASTED
TRIGGER_MANUAL
TRIGGER_DOC_UPDATE
TRIGGER_SYNCHRNOUS_NEW_MAIL
TARGET_NONE
TARGET_ALL_DOCS
TARGET_NEW_DOCS
TARGET_NEW_OR_MODIFIED_DOCS
TARGET_SELECTED_DOCS
TARGET_ALL_DOCS_IN_VIEW
TARGET_UNREAD_DOCS_IN_VIEW
TARGET_PROMPT_USER
TARGET_UI_SELECTABLE_OBJECT

constantsNotesAgent

Libraries/ConstantsTypeDomino Objects

Chapter 10: Programming for Domino 319

Error Handling
Ideally, you would not need to write anything to handle run-time errors;
however, some errors may occur at run-time, such as running out of disk
space or dividing by zero, causing the script to stop unexpectedly. To avoid
this situation, you can include error-handling procedures in your script.

Using On Error and Resume Statements
By using On Error and Resume statements in your script, you can handle
run-time errors that may occur. These statements are built-in functions
provided by LotusScript. The script needs the following steps to handle the
error:

1. Trap the error using an On Error statement and specify where to go to
handle the error.

For example, if the error occurs, you can go to the label ERRORPROC.
 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:

2. Script the error-handling process. For example, at the ERRORPROC:
label.
ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))

3. Complete the error-handling process using a Resume statement to go
back to the statement where the error occurred.
 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))
 Resume

320 Lotus Domino Release 5.0: A Developer’s Handbook

Creating an Error Handler for Debugging
It is useful to have an error handler to help debug your programs, as the
LotusScript debugger ends when errors occur. To prevent this from
happening, you can create an error handler like this:

On Error Goto ErrorHandler
ErrorHandler:
 Messagebox "Error:" & Error(Err), 0+64, "Error!!"
 Print "Error No. : " Err
 Print "Description : " Error(Err)
 Print "Line No. : " Erl
 Resume Next
 Exit Sub

Note If you include the constant definition file (%Include “LSCONST.LSS”,
you can use constant symbols (MB_OK, MB_ICONINFORMATION and so
on) instead of values 0 and 64 in the Message box statement.

If you want to catch all errors in your programs, you need to write the above
error handler in all event routines that you describe (for example,
“initialize,” “postopen” and so on), but not in the subroutines. Once you
have written an error handler in a specific event routine, it can be referred to
in the subsequent subroutines.

Using the Debugger
While you are writing scripts, you will find some errors which will require
fixing. Domino recognizes two kinds of LotusScript errors: compile errors
and run-time errors.

Compilation of your script takes place when you save it. Compile errors are
reported and the script cannot be saved. Because Domino does not allow you
to save your script with compile errors, you need to correct all the compile
errors first.

Tip If you need to save your LotusScript program without correcting the
compile errors at that time, you can exclude the statements with compile
errors using the %REM and %ENDREM statements, as shown in the
following example:
%REM
"Your program with errors"
%ENDREM

A run-time error is an error which cannot be detected during compilation.
Run-time errors are found while Domino is running the script, causing the
program to stop. The script may have the correct syntax, but, for example,

Chapter 10: Programming for Domino 321

division by zero is not allowed. Here is a simple example of this run-time
error:

Dim x As Integer
Dim y As Integer
Dim z As Integer
x = 5
y = 0
z = x / y

During execution of the above code, LotusScript will stop and issue an error
message because dividing 5 by 0 is not a valid operation.

There is one more error type, which is a logical error. You might be able to
run your script without errors, but the result is not as intended.

The Debugger helps you to detect run-time errors and logical errors.

How to Enable the Debugger
It is easy to enable debug mode. Before running your script, do the
following:

1. Choose File - Tools - Debug LotusScript.

2. To check if the Debugger is enabled, choose File - Tools. If the Debugger
is on, there is a checkmark next to the menu option, as shown in the
following figure.

If you click the Debug LotusScript menu again, debug mode is disabled.

322 Lotus Domino Release 5.0: A Developer’s Handbook

If the Debugger is enabled when you start running any LotusScript, the
debugger is launched and the script stops at the first line. The debugger is
shown as follows:

In this example, the script is in interrupt mode.

When you run a script in debug mode, the script shows one of three states:

• When a script is interrupted at a breakpoint, the debugger has control.

• When a script is stepping, control passes to the script and then back to
the debugger after a single statement in the script is performed.

• When a script is continuing, it runs uninterrupted until a breakpoint or
the end of the code is reached.

While the script is in interrupt mode, you can do one of the following:

• Inspect the script.

• Inspect the value of variables and properties.

• Control which is the next statement that will be performed.

• Inspect other defined objects, events and the scripts related to them.

Chapter 10: Programming for Domino 323

You can control which statement is the next to be performed in interrupt
mode. Click:

• Continue

To continue until a break point is reached.

• Step Into

To perform the current statement and step to the next statement.

• Step Over

To perform the current statement and step to the next statement,
stepping over the subprogram if the current statement calls a
subprogram.

• Step Exit

To continue executing the current subprogram and stop in the
subprogram that called it at the line following the call.

Making Breakpoints
If you find a run-time or logical error, inspect your script and make
breakpoints at the statement (or around it) where you suspect the error is
occurring. You can then run your script, and it will stop at the breakpoint. In
interrupt mode, you can inspect the value of important variables and
properties.

One-Step Execution
During one-step execution, only the current statement is performed before
the code is stopped. You can then inspect the values of variables or
properties before and after performing the statement.

Instance Inspection
1. Click the Variables tab in the bottom pane to access the variables

window. The variables defined for the procedure appear in a
three-column display, showing the name, data type, and value of each
variable.

2. To view array or type members, click the arrow to the left of the variable
name.

324 Lotus Domino Release 5.0: A Developer’s Handbook

A Simple Example
To show you how to use the debugger, we will take the database we used
earlier as an example for the PostOpen event.

1. Choose File - Tools - Debug LotusScript to enable debug mode.

2. Open the database and create a new document. The debugger window
will be displayed. The execution of the script stops at the first statement.

The script added to the form object has been launched by the Postopen
event, and the execution stops at the marked sentence.

Go through the debugger.

3. Double-click or click on the statement Call Source.FieldSetText.… and
press F9 in the upper pane. This creates a breakpoint.

4. Click the Variables tab. In this pane you can see instances or variables.

5. Click the green triangle next to Source in the bottom pane. You can see
properties of the Source instance, which is of type NotesUIDocument.
This class represents the document that is currently open in the Notes
workspace.

6. You can see that the variable session does not yet have values.

Chapter 10: Programming for Domino 325

7. Click the Continue action button.

8. The script runs and stops at the breakpoint that you made. The session
variable now has a value.

Note For objects containing a data structure, the values of the data
items are also shown on the top level.

9. Click Continue to run the script to its end. This will then close the
debugger.

This very simple example shows how easy it is to control the execution flow
of the program, and to inspect variables.

Tracing Programs Without a Debugger
There are several ways to trace programs without a debugger, though you
will need to add some statements into the programs to use them. For
example, you can use the PRINT and MESSAGEBOX statements to look at
variables in your programs.

PRINT Statement
The Print statement displays constant values, and the contents of variables
on the status line at the bottom of the Notes interface.

Print "SendingNotification"

326 Lotus Domino Release 5.0: A Developer’s Handbook

This statement results in the following:

When you click the status line, you will see the following message list box,
which contains the Print message history.

To clear the status line, simply issue the Print statement with no arguments.
This clears the status line. However, you can still click the cleared area to
display the message box.

You can also see the messages created by the Print statement by clicking the
Output button when using the Lotus Notes debugger:

Chapter 10: Programming for Domino 327

Messagebox Statement
The Messagebox statement displays a dialog box with some buttons to show
messages.

%INCLUDE "LSCONST.LSS"
Dim twoLiner As String
twoLiner = |This message
is on two lines|
MessageBox twoLiner, MB_OKCANCEL, "Demo"

The following message box is displayed:

Note The vertical bar (|) is the string delimiter for multi-line strings.

Using JavaScript
Before Domino R5.0, the main use of JavaScript within Domino was to
modify the standard behavior of Web pages by adding some “client side”
functions. Client side means that no “server side” activity is requested by
JavaScript functions, so that their result is presented quickly to the end user.
With Domino R5.0, you can use JavaScript to write applications which will
support both the Notes client and the Web browser. All events associated
with an object are programmable, using JavaScript, LotusScript or even
simple @functions, and can be easily accessed within the Programmer’s
Pane.

JavaScript allows you to handle events such as onLoad (for a Web page),
onClick (for an input button on form), onChange, onBlur, onFocus (for input
fields), and so on. You can use these events to trigger JavaScript functions
that can also perform some complex operations. In a Web browser,
JavaScript functions can access all elements on a Web page (like input fields),
as well as properties and methods that control the status and the behavior of
the Web browser window itself. Adding JavaScript to Domino forms and
fields is particularly useful, as it allows you to create forms with a more
dynamic behavior without adding workload to the Domino server. For
example, with JavaScript, field values can be validated locally on the
browser, instead of on the Domino server, after submitting.

328 Lotus Domino Release 5.0: A Developer’s Handbook

Using JavaScript in Domino Design Elements
To use JavaScript in your application, you add JavaScript code to events as
you do with LotusScript. The table below shows some of the supported
JavaScript events for forms and pages:

The user releases a mouse button.onMouseUp

The cursor moves over the form or page.onMouseOver

The cursor leaves the form or page.onMouseOut

The user moves the cursor.onMouseMove

The user presses a mouse button down.onMouseDown

The user releases a key.onKeyUp

The user presses or holds down a key.onKeyPress

The user presses a key down.onKeyDown

Triggered when the user presses the F1-HELP key.onHelp

The form receives focus.onFocus

The user double-clicks a form element or a link.onDblClick

An object on a form is clicked.onClick

When the forms loses focus.onBlur

Window event, before Document reset.onReset

Window event, before Document saved.onSubmit

Before document is cleared.onUnLoad

Similar to PostOpen event.onLoad

DescriptionNotes Form Event Handlers

For form elements, for example, fields, you can provide JavaScript for the
following events:

When mouse is clicked.onClick

On keyword change.onChange

Exiting the object.onBlur

Entering the object.onFocus

DescriptionNotes Form Element
Event Handlers

Chapter 10: Programming for Domino 329

If you want to add JavaScript code for other Window events that are not
handled by the Notes client (such as onFocus, onResize, or onMove), you can
do this in the HTML Body Attributes object for the form. Likewise, if you
want to add an event for a form element, you can do it in the HTML Body
Attributes Field event.

Code in pass-thru HTML and the HTML body attributes fields are passed to
the browser, but ignored in the Notes client.

Note JavaScript must be enabled in the User Preferences in order to be
executed by the client.

Caution If you enter JavaScript code into a formula, keep the following
rules in mind:

1. Within the text string that you are going to put in the formula, every
double quote (“), single quote (‘), and backslash (\) must be preceded by
a backslash (\).

For example:
 click here

must become :
 click here

2. The same text string must be included between two double quotes
before pasting it into the formula. For example:
" click here "

330 Lotus Domino Release 5.0: A Developer’s Handbook

The Browser Javascript Object Hierarchy
The Javascript Object Hierarchy exposed in a browser looks like this:

image

checkbox

document

textarea

text

radio

window

link

combo

button

form anchor Applet

.forms .Applets.anchors.links.images

.elements

.title.URL

...

object

...

.document

frame.status

Math

locationhistory

.document .history .location

Date

Strin g

Array

select

Utility Objects

...
.frames

���������	
��
��	
���������
Navigator

Some of the object relationships illustrated above do not make much sense in
the Notes client; for example, not having more than one form attached to a
document at any one time. Therefore, the Notes JavaScript Object Hierarchy
looks like this:

image

checkbox

document

textarea

text

radio

window

link

combo

button

form anchor applet

.forms[0] .Applets.anchors.links.images

.elements

.title.URL

...

object

...

.document

frame.status

Math

locationhistory

.document .history .location

Date

Strin g

Array

select

Utility Objects

...
.frames

��	��
���������	
��
��	
���������
Navigator

Chapter 10: Programming for Domino 331

Where JavaScript Gives You Access in Domino
With JavaScript, you can use the three events onClick, onBlur, and onFocus to
perform field validations, as well as for buttons.

It also gives you a common language between the Notes client and a browser
that enables applications to be coded only once for both environments.

Examples of Adding JavaScript to Forms
This section lists some examples of JavaScript.

Using a JavaScript Library
If you have a large JavaScript library of functions, it might be better to
reference a single document that stores the library, rather than copying it
into each form or design element that requires the functions. In order to do
this, place the following HTML on a form:

<SCRIPT LANGUAGE="JavaScript"
 SRC="/dbName/JSview/Module1/$file/module1.js">

Note In this example we have assumed that we have a view (JSView) that
collects the document with attachments that are JavaScript files. We access a
document using a key value (Module1), and so we reach its attached file
(module1).js. The Domino server will recognize the .js files only if the
HTTPD.cnf file contains the following:
AddType .js application/x-javascript binary 1.0 #JavaScript

Caution This only works for a Web browser.

The next section contains some examples of using JavaScript in forms and
fields. Each of the following examples shows some effects that you can
implement using JavaScript.

Example 1: Auto-Refresh, Field Validation, and Help Fields
The form in the figure below allows a user to insert a percentage value in
one of the two fields, and the other field is then computed as a
complementary percentage. For example, if a user inserts 70 in A, he or she
will see 30 appearing in B immediately after changing the focus. If a number
greater than 100 is entered, a JavaScript alert message is displayed. Also,
when the user puts the mouse inside a field, a help message is displayed on
the bottom bar of the Web browser.

332 Lotus Domino Release 5.0: A Developer’s Handbook

Note All validation operations are performed locally, without calling any
server tasks.

To create this form, do the following:

1. Create two Numeric Editable fields, PercentA and PercentB.

2. In the onBlur event of PercentA, type:
if(this.form.PercentA.value<=100)
{
this.form.PercentB.value=100 - this.form.PercentA.value;
}
else
{
 alert('Invalid Percentage A!');
};
window.status=''; "

3. In the onFocus event of PercentA enter:
window.status=

'Insert Percentage A and look to Percentage B'

onBlur is an event triggered each time the focus is moved from a field.
Here, it is used to trigger the validation and auto-refresh “procedure”
(if()...else block) and to set the message bar to blank (window.status=
“”). Fields accessed in these procedures are those on the Web form, so
you cannot access hidden or computed Domino fields using JavaScript,
because these are not fields on the Web page.

The onFocus event occurs when a user enters an input field, and here it is
used to set the status bar message in order to use it as a help field.

4. In the onBlur event of PercentB write:
if(this.form.PercentB.value<=100)
{
this.form.PercentA.value=100 - this.form.PercentB.value;
}
else
{
 alert('Invalid Percentage B!');
};
window.status='';

5. In the onFocus event of PercentB write:
window.status=

'Insert Percentage B and look to Percentage A'

This JavaScript code mirrors that in step 2, and it doesn’t need further
explanation.

Chapter 10: Programming for Domino 333

An alternative to onBlur is to use onChange as a triggering event for the
validation. This event occurs only when the value of a field is different from
the previous value.

Note There are many solutions for the problem solved by this example.
Another possible solution is to store a unique JavaScript function for the
validation of the entire form in the header of the Web page, instead of doing
the validation inside each field, and then to call it using the following syntax,
for an event such as onChange or onBlur:
onBlur="validateForm()"

In the same way, you can call a procedure defined in the header of the form
that refreshes fields on that form.

If you prefer to use the validation and translation formulas of the Domino
form, you can use JavaScript to force the execution of these formulas every
time a value is changed in a field. Do the following:

• Put the following in the onChange event of a triggering field:
this.form.submit()

• Put this formula in the $$Return field in order to return immediately to
the form after “refreshing”:

"[/"+@Subset(@DbName;-1) + "/$defaultView/"+
@Text(@DocumentUniqueID)+"?EditDocument]"

In this way, you can also have hide-when formulas working every time the
value changes in that field.

Keep in mind that this is only a simulation of a field refresh, since the
document is actually saved.

To avoid this, you can use a button to perform the formula:
@Command([ViewRefreshFields]). In this way, the form will refresh without the
document being saved, but the user must click the button to see the results.

Example 2: Setting Field Values
The field in the figure below can be reset to today’s date, by clicking the
button. Though this example is very simple, it illustrates a function which
could be very useful — having a button that resets all the fields on a form to
their original values. Again, this action is performed without calling the server.

334 Lotus Domino Release 5.0: A Developer’s Handbook

To create this sample, do the following:

1. Create a button on the form and add the following to the onClick event:
this.form.Date.value = this.form.DefaultDate.value;

The action behind the button assigns the value of the “DefaultDate” field
to the “Date” field.

2. Create an Editable Date field and call it “Date”.

3. Create an Editable Date field and call it “DefaultDate”, and put in its
default formula: @Today.

4. In HTML Attributes of “DefaultDate” write:
"TYPE=\"Hidden\""

Caution This field will not appear on the Web but it is defined on the Web
form, so it does exist on the browser. If you use the Domino hide-when
formulas instead of TYPE=“Hidden”, the field would not be sent to the
browser, so the sample would not work.

Example 3: Using JavaScript with Keyword Fields
In this example the input field is completed automatically when the user
selects a value from a list. Since the selected field is separated by the
keyword list, the user may also introduce a value that is not on the list.

To create this sample, do the following:

1. Create Choices as a keyword field. In the onChange event insert:
form.Country.value =
form.Choices.options[form.Choices.selectedIndex].text;

onChange triggers the assignment of the selected value to the field
named Country. SelectedIndex is the number of the selected item of the
list.

2. Create Country as an Editable Text field.

Chapter 10: Programming for Domino 335

Example 4: Changing an Image on Mouse-Over or Mouse-Out
The image displayed on the screen can be changed when the mouse floats in
and out of it. The following example alternates two different logos,
depending on the position of the mouse pointer.

Note This only works in a browser as Domino does not support the
onMouseOver or onMouseOut events on the Notes client.

To create this sample, do the following:
1. Create a form and put the following JavaScript in the “HTML Head

Content” object of the form:
<SCRIPT LANGUAGE="JavaScript">
logoIBM=new Image(100,40);
logoIBM.src =
"/ChilesDirect/ChilePepperSite.nsf/Banners/IBM/
$file/IBM.gif";
logoLotus=new Image(100,40);
logoLotus.src=
"/ChilesDirect/ChilePepperSite.nsf/Banners/Domino/$file/
DominoSquareLogo.gif";
function showLogo(logoName)
{
 logo = eval(logoName+".src");
 document.images["Banner"].src=logo
}
</SCRIPT>

Caution Remember to replace double quotes (“”) with backslash
double quotes (\“”) before using it in the field formula.

The JavaScript will be inside the header of the Web page, so that all objects
of this JavaScript are allocated before other elements on the Web page.

• logoIBM and logoLotus are the definitions of two images.
• logoIBM.src and logoLotus.src store the URL of the images. You will

need to replace their values with the URL of your sample images.

• showLogo() is a function that replaces the content of the “Banner”
image with that of one of the two defined above; the selection of the
image depends on the value of logoName, which is a parameter (a
string) passed to the function.

2. Add the following HTML code to the form, using pass-thru HTML style:
<a href=http://www.ibm.com
 onMouseOver="showLogo('logoIBM'); return true;"
 onMouseOut="showLogo('logoLotus')">
<IMG NAME="Banner"
SRC="/ChilePepperSite.nsf/Banners/Entrevision/$file/
Entrevision.gif">

336 Lotus Domino Release 5.0: A Developer’s Handbook

Explanation:
• onMouseOver is the event that triggers the function call

showLogo(‘logoIBM’).

• onMouseOut is the event that triggers the function call
showLogo(‘logoLotus’).

• “Banner” is the name of the image that is replaced each time the mouse
enters or exits its area.

Example 5: Updating Frames Using JavaScript
This short sample can be used when you need to change the content of two
frames at the same time.

1. Insert this code in the HTML Head Content object of the form:
"<SCRIPT Language=JavaSript>
function changeFramesContent(URL1,URL2)
{
 top.Frame1.location=URL1;
 top.Frame2.location=URL2;
}
</SCRIPT>"

We have named the two frames Frame1 and Frame2.

2. Create a new button to update the frames, and in the onClick event add
the following:
onClick="changeFramesContent(URL1,URL2);

Cookies and Domino
This section will cover the following topics:

• What is a cookie?

• Cookie syntax.

• Cookie security.

• An example.

What is a Cookie?
Cookies enable a server to send information to a client and then store it
locally on the client file system.

This is useful when you need to simulate a session between a browser and a
client; you can store some status variables on the client so that, on the next
connection, the server can read them and re-establish the ‘session’ starting
from the last status.

Chapter 10: Programming for Domino 337

As an example, you can store user preferences about the layout of some Web
pages in a cookie variable, so that the Web pages are customized for each
user every time they connect to the site.

Cookie Syntax
Cookies are simply text strings of the following format:

" CookieName=Value ; expires= Date ; path= Path ;
 domain= DomainName; secure;"

where:

• CookieName=Value is the name and value of the variable sent to the
browser.

• expires=Date contains a string, for example: “01-Apr-1998 08:00:00
GMT”. If omitted, the cookie is deleted at the end of the browser session.

• path=Path and domain=DomainName; if the URL doesn’t match the
path and domain, the cookie is not sent to or retrieved from the browser.

• secure This is optional and determines whether or not the cookie must
be sent exclusively on a secure connection.

Cookie Security
The following list summarizes the security features for cookies:

• A cookie cannot be an executable file, so it cannot alter the file system.

• A cookie variable can be read and altered only by the server that has
created it.

• An expired cookie cannot be used.

• A cookie can also be sent and retrieved on a secure connection.

Since cookies are stored on the user’s machine, everyone who has access to
that machine can alter the cookies information. Therefore, it is better to use
them to store non-sensitive information only.

Note The way that you use cookies should be similar to how a Notes
developer would use Environment Variables.

An alternative to using cookies is to use Profile Documents. These special
documents can store users’ information and, since they are Domino objects,
the level of security is much higher than that of cookies. Profile documents
are centrally located on the server, so that if you are building an application
for large numbers of users, it might be too expensive in terms of
performance, space, and so on to store so many user profiles on the server.
For many intranet applications, profile documents provide a good method
for keeping track of client information.

338 Lotus Domino Release 5.0: A Developer’s Handbook

Example
The following example comes from the Domino 1.5 User’s Guide.

The program uses JavaScript and cookies to load a page into the browser
and save a cookie called “Cookie_Man” in the user’s cookie file. When
Domino loads the page, it includes the number of times that the site has been
visited before.

To create this sample, prepare a new form, and then do the following:

1. Write the following JavaScript in the HTML Head Content object of the
form, but remember to use a “\” before the double quotes.
"<script>
cookieName = "Cookie_Man";
function doCookie()
{
 if(document.cookie)
 {
 index = document.cookie.indexOf(cookieName);
 } else
 {
 index = -1;
 }
 if (index == -1)
 {
 document.cookie= cookieName+"=1;

 expires=Tuesday, 01-Apr-1998 08:00:00 GMT";
 } else
 {
 countbegin =

(document.cookie.indexOf("=", index) + 1);
 countend =

document.cookie.indexOf(";", index);
 if (countend == -1)
 {
 countend = document.cookie.length;
 }
 count = eval(document.cookie.substring(countbegin,
 countend)) + 1;
 document.cookie=cookieName+"="+count+";
 expires=Tuesday, 01-Apr-1998 08:00:00 GMT";
 }
}

function getTimes()
{
 if(document.cookie)
 {
 index = document.cookie.indexOf(cookieName);

Chapter 10: Programming for Domino 339

 if (index != -1)
 {
 countbegin =
 (document.cookie.indexOf("=", index) + 1);
 countend = document.cookie.indexOf(";", index);
 if (countend == -1)
 {
 countend = document.cookie.length;
 }
 count =
 document.cookie.substring(countbegin, countend);
 if (count == 1)
 {
 return (""+count+" time before.");
 } else
 {
 return (""+count+" times before.");
 }
 }
}
 return ("0 times before.");
}
</script>"

Explanation:

• cookieName is the name of the cookie; its value is “Cookie_Man”.

• doCookie() updates the cookie, thus incrementing its value. The
cookie string has a format such as “cookieName=Value;
expirationParameters”, so some string operations are done to extract
the value, increment it and then rebuild the cookie.

• getTimes() reads the cookie value, and returns a message string with
the cookie value.

2. Write in the onLoad event of the form:
doCookie()

The procedure doCookie() is called every time the form is opened.

3. Write the following script on the form, using Pass-Thru HTML style:
<script>
document.write("You have visited this site "+ getTimes());
</script>

This JavaScript write calls the getTimes() function and writes a message
containing the number of times the user has opened this form.

340 Lotus Domino Release 5.0: A Developer’s Handbook

LiveConnect — JavaScript Access to the Domino Classes
The LiveConnect technology allows JavaScript to initiate applet
communication within browsers and is also implemented in the Notes 5.0
client.

LiveConnect is a proprietary Netscape Technology (since 3.0) and is also
implemented within Internet Explorer. It also allows applet - script (IE -
partial support), script - applet (IE - partial support) and applet - applet
communication, but this is not fully supported in the two browser
environments.

Accessing an Applet From JavaScript
Consider the following applet:

<APPLET CODE="Hello.class" NAME="Hi" WIDTH=150 HEIGHT=25>
</APPLET>

JavaScript can access an applet via the applet name or applets array in the
JavaScript document object:

• document.Hi

• document.applets[0] or document.applets[“Hi”]

On accessing the applet, JavaScript can also access the Java public
methods/properties of the applet:

• document.Hi.methodname

• document.Hi.variable

Obvious advantages include repainting applets with new data at runtime,
without roundtrips to the server via submits.

Accessing CORBA Applets via LiveConnect
Consider the current Notes Client Programmability model. The Domino
Object Model (DOM) is accessed by LotusScript in the event handlers. On
the Web, the scripting language is JavaScript, which has no interface to the
Domino Object Model (DOM). Java has an interface to the DOM, but the
API’s are remote. This is where you can utilize a CORBA applet.

A CORBA-enabled applet can access a remote Domino Session object and, in
combination with LiveConnect, make this property available to JavaScript
via a public property or method. An HTML page can now have a persistent
session with the Domino server via JavaScript and utilize the DOM, without
the need to submit the page to the server for each transaction.

Chapter 10: Programming for Domino 341

Example
The following figures illustrates this technique:

The form contains a 1 pixel square embedded applet in the top left-hand
corner. The applet is CORBA-enabled and, on initialization, it retrieves a
reference to a remote Session object. The applet places this reference into a
private global property, which JavaScript can access via LiveConnect and the
applet public method called getSession(). You can see the applet code below:

 import java.awt.*;
 import java.applet.*;
 import lotus.notes.noi.*;

 public class Applet1 extends AppletBase
 {
 private Session s = null;
 public Session getSession()
 {
 return s;
 }
 public void notesAppletInit()
 {
 setLayout(null);
 setSize(1,1);
 try
 {
 s = this.getSession();
 }
 catch (NotesException e)
 {

342 Lotus Domino Release 5.0: A Developer’s Handbook

 e.printStackTrace();
 }
 }
 }

The form also has a button that, when clicked, calls the getData() JavaScript
function. The JavaScript getData() function is placed in the form for
demonstration purposes. It will normally be placed in the new Domino R5.0
JS Header Event of the form.

function getData()
{

var s = document.applets[0].s;
document._LiveConnect2.Platform.value = s.getPlatform();

 var dir = s.getDbDirectory("");
 var db = dir.getFirstDatabase(dir.DATABASE);

document._LiveConnect2.Name.value = db.getTitle();
document._LiveConnect2.Path.value = db.getFilePath();

}

Once JavaScript has retrieved this object reference, it can utilize the full
Domino Object Model in the JavaScript code.

In the code above, the JavaScript code uses the Session object to access the
following data, which is placed into the respective fields on the form.

• Platform of the Domino server

• Title of the first database on the Domino Server

• File path of the first database on the Domino Server

From a performance perspective, the applet initially takes a small amount of
time to load from the server. Once it is loaded and initialized, however,
access to the remote session object is fast.

For the button to implement the JavaScript, the Use JavaScript When
Generating Pages option must be selected.

Chapter 10: Programming for Domino 343

It is advisable to place complex code into a public method within the applet
to correctly handle Java Exception conditions.

This method could also be used for hiding JavaScript implementation code
as Java inside an applet.

If the form had many applets, the one session reference could be shared
among the applets via the InfoBus technology.

External Tools

The Notes API
The Notes API allows you to write a program that processes data in a
Domino database, or moves data in and out of Domino. The API accesses the
Domino database layer, much as the Domino Object Model itself accesses it.
You can also use the API to access the server software, the Tools menu in the
workstation software, and the File Types list in the File Export dialog box.

Note Because Domino R5.0 supports a CORBA/IIOP architecture, you are
also able to run API programs through the Web. In this case, the client uses
the server API’s. For more information about CORBA/IIOP architecture,
read Chapter 11: Advanced Domino Programming.

You can write an API program to do the following:

• Extract external data, reformat it, and store it in the Domino database.

For example, you can retrieve information from SQL records.

• Extract Domino data, reformat it, and store it in an external application.

For example, you can retrieve Notes workflow status data into a word
processor or executive information management (EIS) system.

• Add commands to the File - Tools menu.

For example, when a user chooses your new command, Domino can
launch your program and pass user context information to it, such as
which view is active, whether the user is editing a document, and which
field contains the cursor. Your program can compute new values and
enter them into Domino fields.

• Implement server add-in tasks.

For example, you can implement a task that takes conditional actions
beyond Notes background macro capabilities. A server add-in task
functions as a daemon. It has no user interface and runs in the
background like other server tasks.

344 Lotus Domino Release 5.0: A Developer’s Handbook

• Create a custom file export format.

For example, when a user selects your new file type in the Notes File
Export dialog box, Domino launches your program and exports data to it.

For more information about the Notes API, read the Notes API User’s
Guide.

Summary
In this chapter we have covered some of the basic methods for programming
the Domino Object Model using LotusScript and JavaScript. In the next
chapter we will cover some of the more advanced methods, such as Java,
CORBA and the LSX toolkit.

Chapter 10: Programming for Domino 345

346 Book Title

This chapter will discuss some of the more advanced methods of coding
applications for Domino. We will cover Java, CORBA/IIOP, OLE
automation, and writing your own LotusScript Extensions using the LSX
toolkit.

Java
As the Web evolves, Java becomes a more important and more commonly
used programming language. Domino offers you the option to write your
applications in Java. For example, you can write your Domino agents in Java.

Domino supports Java programs written in Java 1.1.x.

About Java Domino Classes
Java Notes classes are created by modifying some of the LotusScript
Extension (LSX) architecture to include a Java “adapter” to compose the new
Java Domino classes. The Java Domino classes have similar functions to
some of the LotusScript Domino back-end objects. You can use these classes
from any Java program — within the Notes Designer environment or outside
of it — as long as Notes Release 5 is installed on the machine.

Internally, Java Notes classes execute the same C++ code as the LotusScript
Domino back-end objects, only the language syntax is different.

A Java program is generally made up of a number of files. You must
designate one as the Base Class, which is the starting point for the Java
program. For efficiency, typically for improving applet download speeds,
you can bundle all of the class files and additional resources (for example
GIF files) into a single compressed Java Archive file. The imported Java files
can be of the following types:

• Class - *.class

• Archive - *.jar

For example, when you write a Java agent program, the class you write must
extend the class lotus.notes.noiAgentBase. The code you want to execute when
the agent runs is in the NotesMain() method. The Java Programmer’s Guide

Chapter 11
Advanced Domino Programming

347

describes the Java Domino classes and is available as a database
(JAVAPG.NSF) and installs with other documentation databases in the
\notes\data\doc subdirectory.

Java Coding Conventions
There are some conventions you should follow to write a Java program.

Classes
The names of the Java classes are the same as for LotusScript except they do
begin with the “Notes”-prefix. The table below shows how some of the Java
Domino classes correspond to LotusScript objects:

NotesRichTextItemLotus.Notes.RichTextItem

NotesItemLotus.Notes.Item

NotesDocumentLotus.Notes.Document

NotesViewLotus.Notes.View

NotesDatabaseLotus.Notes.Database

NotesDbDirectoryLotus.Notes.DbDirectory

NotesSessionLotus.Notes.Session

LotusScript Object Java Class

Note By convention you should start your own classes with the first
character as uppercase.

Methods
Method names are written with the first character being lower case, for
example getFirstDocument. Of course, there are some exceptions such as
FTSearch.

Caution Java is case sensitive; the wrong case causes an error.

Properties
To access properties in Java you also have to use methods. In Java,
properties are implemented through methods, known as accessors, which
use the following naming conventions:

• The name of a method used to get the value of a non-boolean property is
the name of the property prefixed with “get”.

• The name of a method used to set the value of a property is the name of
the property prefixed with “set”.

• The name of a method used to get the value of a boolean property is the
name of the property prefixed with “is”.

348 Lotus Domino Release 5.0: A Developer’s Handbook

Parameters and Return Values
Parameter and return values differ from LotusScript as needed to match the
different data types in Java. For example, in LotusScript boolean values are
represented by Variants. In Java they are of type boolean.

Object Containment Hierarchy
In Java you cannot create lotus.notes objects using the “new” modifier. All
lotus.notes objects must be created with lotus.notes methods emanating from
the root Session object.

Agents, Applets, Applications, and Servlets
Java programs can take one of several forms, each with its own
characteristics. The differences between these forms can be summarized:

Java agents complement the familiar LotusScript agents and, to a large
degree, they can be used interchangeably when dealing with back-end
operations. Some reasons for choosing Java over LotusScript are: existing
programmer knowledge, multi-threading, a more fully featured language,
extensibility through (non-visual) beans, etc.

Applets allow a Notes developer to create a richer GUI environment for the
end user. Applets will be dynamically downloaded from the server and
executed on the client’s machine and will work with either Web browsers or
Notes clients. The functions of applets can vary widely, from simple news
tickers to complex database front ends. Java applets are subject to the Java
Sandbox security model, which prevents unauthorized applets from
accessing sensitive machine resources and from performing certain
operations. By default applets will not have access to the Notes back-end
classes. If this is required, then CORBA is needed (see the CORBA section
later in this chapter).

Java applications differ from applets in that they are not dynamically loaded
from the server, they are similar to traditional executables in this respect.
However, Java applications typically run outside the Java “Sandbox”
security model and can thus access machine and network resources denied
to an applet. A Java application can be loosely regarded as analogous to a
stand-alone application which accesses the Notes object model, for example
a C or Visual Basic program. By default applets and applications will not
have access to the Notes back-end classes, if this is required then CORBA is
needed (see the CORBA section later in this chapter).

Java servlets, as their name suggests, only run on the server. A servlet is
invoked by a client request and will respond directly to the client. Typically
a servlet will be used to provide a high performance link to a back-end
system and format the results back to the client as a HTML document.
However servlets are not restricted to serving just HTTP requests and may in
fact converse directly with any suitable client application (usually an applet).

Chapter 11: Advanced Domino Programming 349

Again a loose analogy can be drawn to the ability in Domino to invoke an
agent directly from a HTTP request (myagent?openagent¶m1=value1).

The model for Java agents differs from Java applets in a number of ways:

• Java agents are written explicitly for Domino. Applets are often designed
be served up by any Web servers.

• Java agents behave in the same way as LotusScript agents but Java
applets behave like Java applets in any Web-authoring environment.

• Java agents only run within a Domino-supplied Java runtime
environment whilst Java applets run in both Domino-supplied Java
runtimes and browser-supplied runtimes.

• Java agents are structured in the same way as Java applications (not as
applets). They run within a Domino-supplied context as opposed to
applets whose context is provided in part by the browser and in part by
the codebase parameter specified as part of the applet tag. For agents,
CodeBase and DocBase are not meaningful ways of getting ahold of
additional classes. Instead, as with other Java applications, classes, and
resources are located within Jar files and the class path.

• Java agents can access Domino databases directly using the Java Domino
classes. Applets can only access Domino objects within Notes using
URLs. Note that nothing precludes a Java agent from using URLs to
access Domino objects in Notes.

• Agents do not have a UI (and consequently do not use resources as
much as applets). Java Agents run in a relaxed security environment like
Java applications do. You can wrap an application or agent in a
SecurityLoader, typically this would be used in a tightly controlled
secure environment when running a semi-trusted application. This
feature is being built into JDK1.2 but can be achieved in 1.1x.

Adding CORBA to the Picture
One of the major enhancements in the Domino R5.0 embrace of Internet
standards is the support for CORBA.

Common Object Request Broker Architecture (CORBA) is an open standard
defined by the Object Management Group (OMG). CORBA serves as
middleware for a distributed computing environment whereby clients can
invoke methods on remote APIs residing on other computers. CORBA uses
Internet Inter-ORB Protocol (IIOP) for communication over a TCP/IP
network.

CORBA/IIOP support enables Domino developers to create applets that can
be downloaded to the client and can be remotely invoked in Domino

350 Lotus Domino Release 5.0: A Developer’s Handbook

services, for example, to initiate a workflow process. In addition,
CORBA/IIOP enables information to be processed efficiently over networks
within an open standards-based framework and to distribute work
effectively between clients and servers, ultimately lowering the cost of
ownership.

Benefits of Using CORBA
Some advantages to using CORBA are:

• You can use Domino Object Model (DOM) back-end classes to support
CORBA.

• The client does not have to deal with issues such as networking or
security.

• CORBA allows many different clients to use the same objects (not copies
of the objects). The latest version of the object is always used.

• Client applications can be in different languages from the Server Objects.

• Java ORBs and Stubs can be downloaded to the client at runtime, which
means:

• Users don’t have to install the application on the client before running
it.

• Clients are always working on the most current version of the
application.

• Network computers are supported as clients as the application is
removed when the computer is turned off.

For a more detailed look at the CORBA internals look in the appendix.

How and When to Use CORBA
CORBA support can be easily added to Java applets and applications to
extend their reach into the Domino back end. In order to utilize CORBA you
must make some small changes to your server and Java programs.

Chapter 11: Advanced Domino Programming 351

A Java program using CORBA has the following requirements:

Server
• The server tasks HTTP and NOI must be running. Ensure that the

notes.ini file contains the following line:

ServerTasks=<any other tasks>,http,noi

To enable an applet for CORBA, import your applet into a form and select
the appropriate properties from the applet InfoBox.

For performance reasons, when a CORBA enabled applet is loading in the
Notes client all the calls are transparently made to the Notes DLLs rather
than the Java classes.

Compiling and Running a Java Program
The new package, lotus.notes.noi, which comes with Domino R5.0 supports
local and remote calls to the Notes object interface (NOI). This package
contains the same classes and methods as the lotus.notes package shipped
with Domino R4.6 plus new classes, new methods, and some other
enhancements.

Note The Domino R4.6 lotus.notes package is supported for backward
compatibility only.

A Java program using the Domino classes has the following requirements:

Server
• The server tasks HTTP and NOI must be running. Ensure that the

notes.ini file contains the following line:

ServerTasks=<any other tasks>,http,noi

352 Lotus Domino Release 5.0: A Developer’s Handbook

Designer
• Ensure that the NOTES.INI file contains the following line:

ALLOW_NOTES_PACKAGE_APPLETS=1

• The Domino Designer R5.0 machine must have the CLASSPATH
environment variable set as follows:

set CLASSPATH=<other>;<domino>\NCSO.jar;<domino>\Notes.jar

Notes.jar contains the high-level lotus.notes.noi package, the
lotus.notes.noi.local package for local calls, and the old lotus.notes
package. NCSO.jar contains the high-level lotus.notes.noi package and
the lotus.notes.noi.corba package for remote calls. Strictly, you do not
need NCSO.jar if you are not compiling remote calls and you do not
need Notes.jar if you are not compiling local calls or old calls.

Your class code must import the high-level lotus.notes.noi package:

• import lotus.notes.noi.*

Runtime Requirements

• A machine running a Java application that makes local Notes calls must
contain Domino R5.0 (Client, Designer, or Server) and must include
Notes.jar in the CLASSPATH.

• A machine running a Java application that makes remote Notes calls
need not contain Domino R5.0, but must contain NCSO.jar and must
include NCSO.jar in the CLASSPATH.

• A machine running a Domino R5.0 agent that makes Notes (Java) calls
must include Notes.jar in the CLASSPATH.

Note A machine running an applet that makes Notes calls needs no
Domino software or CLASSPATH assignments.

• The server must be running when remote calls are made.

Remote Calls to lotus.notes.noi Package
In order for a Java application for remote runtime access of
lotus.notes.noi you must create a Session with the NotesFactory method
createSession(String IOR, String user, String pwd). NotesFactory is new with
R5.0 and the lotus.notes.noi package.

The IOR (initial object reference) parameter is required to access a Domino
server remotely. It is a string contained in the file ior.txt in the notes
directory of the Domino server. The NotesFactory method getIOR(String
host) returns the IOR for a given host.

Chapter 11: Advanced Domino Programming 353

The second and third parameters must be a user name and Internet
password in the Domino directory on the server being accessed. If empty
strings are specified, anonymous access must be permitted by the server.

The application must not use the NotesThread method. NotesThread is for
local access only.

This example demonstrates an application using remote calls:

import lotus.notes.noi.*; // replaces old lotus.notes package
public class Platform3 implements Runnable
{
 String host=null, IOR=null, user="", pwd="";
 public static void main(String argv[])
 {
 if(argv.length<1)
 {
 System.out.println("Supply Notes server name");
 return;
 }
 platform3 t = new platform3(argv);
 Thread nt = new Thread((Runnable)t);
 nt.start();
 }

 public Platform3(String argv[])
 {
 host = argv[0];
 if(argv.length >= 2) user = argv[1];
 if(argv.length >= 3) pwd = argv[2];
 }

 public void run()
 {
 try
 {
 IOR = NotesFactory.getIOR(host);
 Session s = NotesFactory.createSession(IOR,user,pwd);
 String p = s.getPlatform();
 System.out.println("Platform = " + p);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

354 Lotus Domino Release 5.0: A Developer’s Handbook

Applet Calls to lotus.notes.noi Package
An applet intended for run-time access of lotus.notes.noi extends A
ppletBase and puts its functional code in the methods notesAppletInit(),
notesAppletStart(), and notesAppletStop(). AppletBase is new with Domino
R5.0 and the lotus.notes.noi package. You do not have to distinguish
between local and remote access. AppletBase will make local calls if the
applet is running on a machine with Domino installed and remote calls
otherwise.

Domino will automatically supply the IOR.

Here is an example of an applet that makes NOI calls:

import lotus.notes.noi.*;
public class Platform4 extends AppletBase
{
 java.awt.TextArea ta;
 public void notesAppletInit()
 {
 setLayout(null);
 setSize(100,100);
 ta = new java.awt.TextArea();
 ta.setBounds(0,0,98,98);
 add(ta);
 ta.setEditable(false);
 setVisible(true);
 }

 public void notesAppletStart()
 {
 // Can also do getSession(user, pwd)
 Session s = this.getSession();
 try
 {
 String p = s.getPlatform();
 ta.append("Platform = " + p);
 {
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

Chapter 11: Advanced Domino Programming 355

Setting Security Options for Java Applets
You can now set security options for applets to prevent unauthorized access
to your Notes file system or to Notes Java classes. You create an execution
control list that identifies what people and groups you trust with access to
your Notes system. When an applet runs on your workstation, Notes checks
for execution rights of the person or group that signed the applet. If an
applet is signed by a person or group without the correct authorization,
Notes alerts you to the illegal operation. You can abort the operation and not
run the applet, trust the signer of the applet one time, or automatically add
the signer to the execution control list.

Note that this security model only applies to applets running on the Notes
client. Applications running on a Web browser must follow the security
model set by the browser.

To set applet security:

1. Choose File - Tools - User Preferences.

2. Click the Security options button on the Basics page.

3. Click Java applet security to display the security panel.

Enter a person or group name and assign access rights to the file system
and/or Notes Java classes. The Add button lets you enter a name or
choose one from a Public Address Book.

4. Click OK and close the dialog box when you have completed your
entries.

Note The implementation of this applet security system removes the
restriction on using Notes classes in Java applets.

Using the NotesThread Class
A stand-alone program must use the lotus.notes.NotesThread class, which
extends Java.lang.Thread. You can either extend NotesThread or implement
the Run-able interface. If you extend NotesThread, the entry point to the
functional code must be public void runNotes(). If you implement run-able,
the entry point must be public void run().

• A Domino or Domino agent program must extend the
lotus.notes.AgentBase class, which extends lotus.notes.NotesThread. The
class that contains the agent code must be public. The entry point to the
functional code must be public void NotesMain().

• The lotus.notes.Session class is the root of the Notes back-end object
containment hierarchy. For stand-alone programs, use the method
newInstance() to create a Session object. For agents, use the AgentBase
method getSession().

356 Lotus Domino Release 5.0: A Developer’s Handbook

• System.exit must not be used to terminate a program using the
NotesThread class (and by extension the AgentBase class). In an agent,
System.exit throws SecurityException. In a stand-alone program,
System.exit may cause corruption problems.

• For foreground agents, System.out and System.err output goes to the
Java debug console. For locally scheduled agents, System.out and
System.err output goes to the Notes log.

Creating a Java Agent

Example 1: Java Agent
This example shows an agent that runs on newly created and modified
documents since the agent was last run. The program works on the
unprocessed documents, prints the form name of each document, and marks
each document as processed. The first time the agent runs, the agent returns
all of the documents in the database. Thereafter, the agent returns those
documents that updateProcessedDoc has not touched.

1. Create an agent:

• Name the agent.

• Select When should this agent run = Manually from Actions Menu.

• Which documents should it act on = All documents in database.

• Select Java as your source code and write the agent code.
import lotus.notes.noi.*;
import java.util.*;

public class myagent extends AgentBase
{
 public void NotesMain()
 {
 try
 {
 Session s = getSession();
 AgentContext ac = s.getAgentContext();
 DocumentCollection dc =
ac.getUnprocessedDocuments();
 Document doc;
 int size = dc.getCount();
 System.out.println("Count = " + size);
 doc = dc.getFirstDocument();
 while (doc != null)
 {
 System.out.println
 (" *** " + doc.getItemValue("form"));
 ac.updateProcessedDoc(doc);

Chapter 11: Advanced Domino Programming 357

 doc = dc.getNextDocument(doc);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

• Save it.

Example 2: Using Java Notes Classes
This sample Java program is from Lotus Technology Learning Center. The
Java code is commented to help you understand how the Java Notes class is
implemented.

This program creates an instance of NotesThread, a class which extends the
Java Thread class. It allows Notes to properly initialize and terminate per
thread in a convenient way for the programmer.

This sample program does the follow things:

1. Creates a new Notes session.

2. Opens a database (in this case, the local Address Book).

3. Accesses the People view.

4. Searches the People view for the entered name.

5. Accesses the document that matches the search criteria.

6. Pulls the Spouse field out of the document.

7. Prints the Spouse field in a message output.

To Run This Sample:
1. Add a person John Smith and his spouse Mary Smith into the local

Address Book. John Smith will be used as a parameter to the command
to run the Java program.

2. Write the following code into a Java program(.java), set Windows 95
PATH and CLASSPATH as follows:
PATH = c:\jdk1.1.3\bin;c:\notes\;
CLASSPATH = c:\jdk1.1.3\lib\classes.zip;c:\notes\notes.jar;

3. Compile the Java program.

Note We used Java JDK Version 1.1.3 from SUN. You can download it
from www.javasoft.com.

4. Type the command:
javac myjavafile.java

358 Lotus Domino Release 5.0: A Developer’s Handbook

The output is a file named abe.class.

5. Run this class file at a DOS command prompt:
C:\jdk1.1.3\bin> java abe.class John Smith

The output will be like this:
Creating Notes session...
User name = CN = John Smith OU=CAM O= Lotus
Spouse of John is Mary Smith
Date Created : 08/15/97 16:00:00 PM EDT

The sample program is listed below for your information:

Copyright 1997, Iris Associates, Inc.

Sample Java program, for illustrative purposes only.

*/
import lotus.notes.*;
import java.lang.*;
import java.util.*;

class abe implements Runnable
{
public String g_name;

// if you run the class from the command line...
public static void main(String argv[])
throws Exception
{
// print out a message, then exit, no args provided
if (argv == null || argv.length == 0)
 System.out.println("Usage: java abe <user name>");

else
 {
 // create new instance of abe
 abe t = new abe();

 // store name to look up in the instance
 t.g_name = argv[0];

 // make sure the Notes lsx is loaded
 NotesThread.load(true);

 // create a thread instance for running abe, start it
 NotesThread nt = new NotesThread((Runnable)t);

 // start the thread, call our runNotes()
 nt.start();

Chapter 11: Advanced Domino Programming 359

 }
}

// this would get called if we ran it from java.lang.Thread
instead
public void run()
{
runNotes();
}

public void runNotes()
 {
 int i;
 try
 {
 System.out.println("Creating Notes session...");
 Session s = Session.newInstance();

 // show off, print the current user's name
 System.out.println("User name = " + s.getUserName());

 // get db instance for the name and address db
 Database db = s.getDatabase("","names.nsf");

 // find the "People" view
 View view = db.getView("People");

 // search for the name provided
 view.FTSearch(g_name);

 // for now, ignore multiple matches
 Document doc = view.getFirstDocument();

 // look up contents of the "spouse" field
 String name = doc.getItemValueString("Spouse");
 System.out.println("Spouse of " + g_name + " is " + name);

 // also print out the date the document was created
 System.out.println("Date created: " + doc.getCreated());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

360 Lotus Domino Release 5.0: A Developer’s Handbook

CORBA/IIOP
Domino R5.0 uses an architecture called Common Object Request Broker
Architecture (CORBA). This is an open standard defined by the Object
Management Group (OMG). CORBA serves as middleware for a distributed
computing environment whereby remote clients can invoke methods on
remote APIs residing on other computers. CORBA uses Internet Inter-ORB
Protocol (IIOP) for communication over a TCP/IP network.

CORBA/IIOP support enables Domino developers to create applets that can
be downloaded to the client and can be remotely invoked in Domino
services, for example, to initiate a workflow process. In addition,
CORBA/IIOP enables information to be processed efficiently over networks
within an open standards-based framework and to distribute work
effectively between clients and servers, ultimately lowering the cost of
ownership.

Benefits of Using CORBA
Some advantages to using CORBA are:

• You can use Domino Object Model (DOM) back-end classes to support
CORBA.

• The client does not have to deal with issues such as networking or
security.

• CORBA allows many different clients to use the same objects (not copies
of the objects). The latest version of the object is always used.

• Client applications can be in different languages from the Server Objects.

• Java ORBs and Stubs can be downloaded to the client at runtime, which
means:

• Users don’t have to install the application on the client before running
it.

• Clients are always working on the most current version of the
application.

• Network computers are supported as clients as the application is
removed when the computer is turned off.

Chapter 11: Advanced Domino Programming 361

CORBA Architecture
In order to understand how the CORBA/IIOP architecture works, we will
first take a closer look at CORBA.

The heart of CORBA is the Object Request Broker (ORB). This is the object
bus, i.e. it’s like a PC bus but instead of sending bits/bytes/instructions it’s
sending objects and is potentially distributed. The job of the ORB is to act as
a middleman, allowing objects to make requests of each other. Although the
ORB operates in a client/server environment, objects that the ORB works
with can function as either clients or servers, depending on the circumstances.
If an object is receiving and processing a request, then it is acting as a server.
If the object is making a request, then it is acting as a client.

The ORB handles these requests regardless of programming language,
operating system, or platform. The mechanism that allows ORBs to handle
requests transparently is the Interface Definition Language (IDL), which is
used to declare the boundaries and interfaces of an object. Much like an
independent arbitrator, the IDL is neutral and independent of the object and
the ORB, yet it binds providers of distributed object services to their clients.

CORBA IDL uses inheritance to encapsulate objects and so it is able to reuse
code very easily. Furthermore, the beauty of IDL is that you can concisely
define APIs, yet still have the freedom to define the IDL methods in any
programming language that provides CORBA bindings, for example,
COBOL, C, C++, Smalltalk, and Java.

To make IDL truly independent, CORBA uses an Interface Repository (IR),
the purpose of which is to store the method signatures of objects so that the
signatures can be dynamically retrieved and updated at runtime. In this
way, all objects in the enterprise system can learn about other objects’
interfaces, the methods the interfaces support, and the parameters the
interfaces require.

When you bring together the ORB, the IDL, and the Interface Repository,
you have a basic model of CORBA. The model doesn’t include all the pieces
of the architecture, but it gives you an idea of how heterogeneous objects
interact using CORBA.

Internet Inter-ORB Protocol (IIOP)
Internet Inter ORB Protocol is a protocol also developed by Object
Management Group (OMG), which enables CORBA solutions to
communicate over the World Wide Web (WWW). It enables browsers and
servers to exchange data (integers, arrays, and complex objects) unlike
HTTP, which only supports text transmissions.

362 Lotus Domino Release 5.0: A Developer’s Handbook

CORBA and Domino
In earlier releases, the Domino client and server could communicate together
using APIs, but meant that all APIs and objects which were needed had to
reside on the client’s disk. This was sometimes difficult, for example, where
many clients needed a particular application, and it also required additional
disk space on the client.

CLIENT

LOCAL API

SERVER

CLIENT
OBJECTS

PROTOCOL

In this environment, what happens if a non-Domino client wishes to utilize
these APIs and there are no local Domino APIs present? The Domino server
has server APIs to implement the DOM (Domino Object Model), but the real
issue is how can the user access these remote APIs from a browser?

SERVERCLIENT

CLIENT
OBJECTS

?????? SERVER API

Chapter 11: Advanced Domino Programming 363

In earlier Domino versions specific challenges included the following:

• Within a Web browser, applets had limited access to the database on the
server via Java API calls to remote Domino information after loading.
Also, the DOM could not be directly accessed by browser clients but
only indirectly via Web agents, triggered on document load or save.

• Within a Notes client, applets could not use the Java Notes classes as
they made native calls to local DLLs and this could compromise Java
applet security. Also, these applets could not retrieve Domino
information after initial loading. Applet programmability options were
not seamless to mixed client audiences.

• Standalone Java applications required an installed Notes client to use the
4.6 Java classes as they made native calls to locally installed Domino
DLLs (the Java classes were a wrapper around the C++ core).

CORBA/IIOP support in Domino R5.0 solves these problems. As mentioned
earlier, CORBA serves as middleware and facilitates the design and
implementation of distributed systems by providing a transport trough for
distributed objects to locate and exchange data with each other and provide
language, operating system, hardware platform, and networking
interoperability.

The following figure shows how a browser can use the Domino database to
use CORBA:

SERVER

CLIENT

CLIENT
OBJECTS

C++ SERVER API

CORBA
(C ++)CORBA

(Java)
IIOP

This allows Java programs on remote clients such as applets in browsers and
standalone Java applications to access the Domino Object Model (DOM) on
the Domino server. From an implementation standpoint, a remote client

364 Lotus Domino Release 5.0: A Developer’s Handbook

instantiates and references DOM objects as if they were resident on the
client, but in fact the client is communicating with objects on the server.

Thanks to CORBA/IIOP Domino is able to:

• Use applets that can create a permanent DOM session with the Domino
server and access the back-end objects as if they were in a Notes client.
Also, the browser programmability mode can now more closely
resemble the Notes client programmability model. You can now
associate Java or JavaScript with the W3C (World Wide Web
Consortium) events and access data either on or off the current
document without refreshing or submitting the current page. For an
example of how to access the top level Notes session object via
JavaScript see Chapter 10.

• Switch the transport dynamically depending on context; if the applet is
in a browser, CORBA is used. If it’s in a Notes Client then the Notes API
is used because it’s more efficient. Security options in the User
Preferences can control which applets, signed by whom, can access the
file system or Notes Java classes. The same CORBA applet will use
remote calls to the server from a browser. This is seamless to the
programmer as long as the applet is designed specifically for CORBA.
The most compelling example of this technology is the ability to place a
custom applet on a form and have that applet access the DOM in both
the Notes client and a browser.

• Use standalone Java applications which have access to the Domino
server directly via CORBA without a client being installed locally.

Note CORBA is often only associated with Java, but the real strength of
CORBA is its support of heterogeneous programming environments. In the
real world many legacy systems and newly developed applications are
written in different languages and they need integration in order to work
together. Language inter operability allows objects running in heterogeneous
languages to make invocations to each other. A CORBA interface can be
mapped into a number of popular programming languages on the client or
server, for example, C, C++, Smalltalk, Ada, COBOL, and Java already have
CORBA interfaces.

Coding the CORBA Applet
This section gives you an example of how to use CORBA within a Domino
application.

An applet intended for CORBA run-time access of Domino needs to be
designed in a specific way.

Chapter 11: Advanced Domino Programming 365

Step 1
Import the lotus.notes.noi package into your applet source file. This package
is contained in the NCSO.jar or cab file and is new to Domino R5.0. It
contains the new DOM classes and CORBA Client stub classes.

import lotus.notes.noi.*;

Step 2
Your applet class must extend the AppletBase class.

This class already implements the standard applet methods init(), start(),
end(), stop() as final methods, therefore you cannot create (or override)
these in your applet. Instead these final methods call the following methods
respectively notesAppletInit(), notesAppletStart(), notesAppletEnd() and
notesAppletStop(). These methods are also contained in the AppletBase
class and are not final. If you wish to implement the functionality that you
would normally in the traditional applet methods, you must override the
respective notesAppletXXXX() method in your applet class. You do not have
to distinguish between local and remote access. AppletBase will make local
calls if the applet is running through the Notes client and remote CORBA
calls if it is running through a browser.

import lotus.notes.noi.*;
 public class myApplet extends AppletBase
 {
 public void notesAppletInit()
 {
 // Your Applet Init Code
 }

 public void notesAppletStart()
 {
 // Your Applet Start Code
 }

 public void notesAppletEnd()
 {
 // Your Applet End Code
 }

 public void notesAppletStop()
 {
 // Your Applet Stop Code
 }
 }

366 Lotus Domino Release 5.0: A Developer’s Handbook

Step 3
To access a Session object within your applet you use the getSession()
inherited instance method of the AppletBase class. As mentioned previously,
the getSession() method call will also instantiate and initialize the Client
Side ORB as well as request a remote Session object reference from the
Domino server. Each applet on a HTML page invoking the getSession
method will instantiate another Client ORB. This may not be desirable,
methods for inter-applet communication such as the InfoBus technology may
be used to alleviate this situation. Another issue is where to invoke your
getSession() method. This should be in either the notesAppletInit() or event
handlers for the applet. You don’t want to be calling this code every time an
applet is restarted.

import lotus.notes.noi.*;

 public class myApplet extends AppletBase
 {
 private Session s = null;
 public void notesAppletInit()
 {
 try
 {
 s = this.getSession();
 }
 catch (NotesException e)
 {
 e.printStackTrace();
 }
 }
 }

Step 4
Compile your class. If you are using the JDK or a third-party IDE such as
Visual Age for Java or Visual Cafe, then make sure that the NCSO.jar file is
in the CLASSPATH for these IDEs. Your applet is ready to be implemented
in the Domino environment.

Chapter 11: Advanced Domino Programming 367

Implementing CORBA Applets Within Domino
Once the applet is developed, it must be included in the Domino
environment.

Steps 1 and 2 explain what to set up in Domino to include your applet and
make your Domino server CORBA aware.

Step 1
You can create an applet in the rich text field of a Domino Document or
Domino Designer Form or Page. Either way, you get the option of importing
or linking to an applet from the file system.

If you use the import option, you must import all applet related classes into
Domino including the NCSO.JAR file which contains the CORBA Java Client
Stubs as well as CORBA Client ORB classes. This file is located in the
Domino\html directory.

If you choose to link to an applet on a Web server, the NCSO jar and cab files
are in the HTML directory on the Domino server.

After creating the applet, you modify the applet parameters via the
Properties box. If you wish the applet to be CORBA enabled on a HTML
page served by Domino, you must select the circled check box as follows.

368 Lotus Domino Release 5.0: A Developer’s Handbook

When this option is selected, Domino automatically adds applet parameters
to the applet HTML tag before serving the Document to the Browser.

<APPLET WIDTH="500" HEIGHT="350"
CODEBASE="/demo/Mixed159.nsf/6da8a0 /$FILE"
CODE="Applet1.class" ALT="Corba Applet Demonstration"
ARCHIVE="NCSO.jar">
<PARAM NAME="NOI_IOR"
VALUE="IOR:010000002e00000049444c3a6c6f7475732
...........000000">
<PARAM NAME="NOI_COOKIE"
VALUE="2612D611-701A73B8-49A21014-2BE0C163">
</APPLET>

• The NOI_IOR parameter is the object reference to the Notes object
server, our NOI addin. This is the object on which you call
CreateSession.

• If the CORBA option is not selected, the object reference will not be
added, the CORBA applet code thinks that it is running in the context of
the Notes Client and tries to make native calls to the local Domino DLLs
which causes an error.

• The NOI_COOKIE parameter ensures single user login, i.e. the CORBA
applet is not challenged for a Username/Password again. The cookie
comes from the server when the client logs on.

Chapter 11: Advanced Domino Programming 369

If the applet is running within the Notes Client, this check box option is
ignored and the two extra parameters are not added and the applet will
access the local Domino APIs. This may seem a security risk but the Security
Options under the User Preferences menu option allows the User to define
what applet security to enforce on whom.

The Object Reference String that is added to the applet Parameter list is
generated on the Domino Server when starting the NOI task for the first time
and created in the NOI_IOR.TXT file in the Domino HTML directory. If this
file is somehow deleted, the file is regenerated again when the NOI task is
re-started.

Applets at Runtime
The following figure shows the architecture of the CORBA/IIOP interface
for Java applets.

Steps 2, 3, and 4 describe what happens when a Web browser interacts with
a Domino server that includes a CORBA enabled applet.

370 Lotus Domino Release 5.0: A Developer’s Handbook

Step 2
Domino serves a HTML page to the Web browser which includes the
reference to embedded CORBA enabled Java applets. If the CORBA option
in the applet properties is checked, the Domino server will automatically
include the 2 extra parameters needed by CORBA, discussed above. The
Web browser then retrieves the Java applet from the Domino HTTP server.
This includes the applet classes and the NCSO.jar file which contains the
Client ORB classes and the DOM Client Java Stubs.

Step 3
The applet is loaded into memory and the first invocation of the getSession()
method instantiates and initializes the Client ORB. If more than one CORBA
applet is loaded into the HTML page, each getSession() invocation will
instantiate another Client ORB. Technologies such as the InfoBus, which
allow applets to share information, could be used here to share the one
Session object reference.

Step 4
Requests for instantiation of remote Server objects or method calls on
existing remote objects are passed through the Client ORB back to the
listening Server ORB via IIOP. Remember, all DOM implementation is on the
server, so only data can be returned. The session between the applet and the
remote server object will persist until either side decides to disconnect. If the
server goes down during a request, objects will be discarded and the request
must be repeated.

Domino and OLE Automation
OLE (Object Linking Embedding) is a feature of Windows and is also
supported on the Macintosh. The OLE object model is used by developers to
expose the objects of one product to another. OLE Automation is an OLE
service for integrating applications. Two key elements of OLE Automation
are the OLE Automation Server and OLE Automation Controller or Client.
OLE Automation Servers expose applications’ functionality as objects to
other applications. These objects have properties (data) and methods
(functions). OLE Automation Controllers can control objects in OLE
Automation Servers through their properties and methods. Simply put, OLE
Automation is the process in which an OLE Automation Controller sends
instructions to an OLE Automation Server. You can call upon an OLE
Automation Server object’s code to perform a variety of tasks that you do not
want to, or cannot, perform in your own code.

Chapter 11: Advanced Domino Programming 371

Domino can act both as an OLE Automation Server providing functionality
to other applications and as an OLE Automation Controller where a Domino
application integrates with functionality offered by an external OLE
Automation Server application (for example a spreadsheet).

First we will cover how you create solutions using Domino as an OLE
Automation Server and then we will describe how the Notes client can act as
an OLE Automation Controller.

Accessing the Domino Object Model Using OLE Automation
To get access to the Domino Object Model through OLE Automation the
Notes client must be installed on the workstation where the application code
will execute.

As described in the introduction, OLE Automation exposes the full Domino
Object Model to the OLE Client Application. This gives your OLE Client
application the ability to implement a wide range of function where Domino
handles such underlying complexity as networking, authentication, access
control, and so on.

Some typical examples of Domino functionality utilized through OLE
Automation are:

• Sending mail

• Storing information in Domino databases

• Integrating an external application with a Domino application

Client applications that utilize Domino as an OLE Automation Server are
often spreadsheets and word processors in productivity suites like Lotus
SmartSuite® and Microsoft Office, but they can also be specialized programs
developed in C++ or Visual Basic.

We will first discuss in general how the OLE client connects to Domino
objects and then we will walk through an example, look at some code
snippets, and finally talk about runtime errors and how to debug them in
Visual Basic

• Sending information from Excel using Domino

• More examples

• Runtime errors and debugging

372 Lotus Domino Release 5.0: A Developer’s Handbook

Connecting to Domino Using OLE Automation
You can create a reference to Domino objects, like NotesDatabase,
NotesACL, NotesLog, and NotesDocument, in your code. There are two
“entry points” that you can use

• NotesSession

Use NotesSession if you don’t need to use elements from the Notes
Client user interface — for example, for storing data directly in a
Domino document or sending mail where your application supplies all
necessary information

• NotesUIWorkspace

Use NotesUIWorkspace if you want to integrate your application with a
Domino application running in the Notes client — for example, to take
advantage of data validation already found on a form in a Domino
database or to have the Domino mail application handle addressing

Refer to the description of the Domino Object Model to see how you can get
a reference to any object in the Domino Object Model (like NotesDatabase,
NotesDBDirectory, NotesACL, NotesItem, and NotesUIDocument) from one
of these two top level objects.

If you are using Visual Basic either as a standalone development tool or as
the macro language in an application, when you declare a variable that
references a Domino object you can manipulate the object using the
object.property and object.method syntax in Visual Basic. This allows you to
get and set values for Domino Objects and execute their methods in a simple
way.

Note Remember to clear any variables that reference Domino objects once
you are done using them so they can be released from memory. To clear a
variable in Visual Basic set it to Nothing.

Sending Information From Excel Using Domino
Domino R5.0 supports using mail from Microsoft Office applications without
any programming. However, if you don’t want to send a whole spreadsheet,
but just a small memo with a few essential numbers from the spreadsheet,
you must write a small macro.

We will walk you through an example of how to create a button in an Excel
spreadsheet that triggers a macro. This macro connects to Domino and
creates a memo containing the content of a cell and then sends the memo off
to a recipient group named Supervisors.

The way to do this may vary depending on the version of Excel you are
using. If in doubt refer to the documentation in Excel on how to create a
button that triggers a macro.

Chapter 11: Advanced Domino Programming 373

1. Start Excel and create a new blank spreadsheet.

2. Make sure the Forms toolbar is visible (View - Toolbars - Forms).

3. Click the Button in the Forms toolbar (if in doubt rest the mouse over the
choice until the hover help appears — it should say “Button”).

4. On the spreadsheet, click and hold the mouse button down while you
drag the mouse to define the rectangle for the button. Release the mouse
button when the size is right

5. Excel shows a dialog where you can assign a macro to run when your
newly created button is clicked. You haven’t created the macro yet so
you do it now. Click the New button.

6. This opens a Visual Basic module in which you can write the macro. In
the window where there are two lines like this
Sub Button1_Click()
End Sub

Enter the following code:
Sub Button1_Click()
Dim session As Object
Dim db As Object
Dim doc As Object
Set session = CreateObject("Notes.Notessession")
'set db to database not yet named
Set db = session.getdatabase("", "")
'Now, set database to default mail database
Call db.openmail
'Get the value of cell D1 in this sheet
Mycell = Sheet1.Cells(1, 4)
' create a mail document in Domino
Set doc = db.createdocument
msg = "Mail has been sent: " & Date & " " & Time & Chr(10)
& _ & "The value in Cell D1 [" & Mycell & _
 "] is in the body of the message"
Call doc.replaceitemvalue("SendTo", "Supervisors")
Call doc.replaceitemvalue("Subject", "Excel message")
Call doc.replaceitemvalue("Body", msg)'send the message
Call doc.Send(False)
MsgBox doc.getitemvalue("Body")(0)
MsgBox session.UserName
Set session = Nothing ' close connection to free memory
End Sub

7. Close the Visual Basic Editor window.

8. On the spreadsheet, type some number in cell D1 (e.g. 1-2-3).

374 Lotus Domino Release 5.0: A Developer’s Handbook

9. Click the button you just programmed. The macro does the following:

• Connects to Domino (NotesSession)

• Opens the mail database of the current user (that is you)

• Creates a new document in the mail database

• Reads the value of cell D4 and constructs a message containing that
value

• Writes the message together with recipient and subject to fields in the
new mail document and sends it off to the people in the group
Supervisors

• Then the macro reads the value of the Body field from the mail
document it just created and displays that value in a message in Excel

• The macro also gets the name of the current user from Domino and
displays that to the user

• Finally the macro destroys the connection to Domino to free up
memory

Here are a few things to note about the code:

Domino Objects Are Declared as Objects in Visual Basic

Dim session As Object
Dim db As Object
Dim doc As Object

To access the Domino objects they must be declared as OLE Objects in Visual
Basic, while they are declared as their native classes in LotusScript (e.g., Dim
db As NotesDatabase). If copying LotusScript code to a Visual Basic
environment you must change these declarations.

As the Domino objects simply are declared Object in Visual Basic we cannot
use the New method of the Domino classes as we can in LotusScript. Instead,
we have to derive our Domino object from the NotesSession or
NotesUIWorkspace object. If you have the following code in LotusScript,

Dim db As New NotesDatabase(""; "test.nsf")

and want to use it in Visual Basic you must change it like this:

Dim db As Object
......
Set db = session.GetDatabase("";"test.nsf")

Chapter 11: Advanced Domino Programming 375

Use CreateObject to Connect to the Top Level Domino Object
To access all the back-end classes in the Domino Object Model we must use
this code:

Set session = CreateObject("Notes.NotesSession")

This creates a reference to the NotesSession object that is created externally.
From the session object we can get to any back-end class.

Access and Create other Domino Objects Using the Domino Object
Hierarchy
Here you see how to get to the NotesDatabase and NotesDocument classes
through the session object:

Set db = session.getdatabase("", "")
............
Call db.openmail
............
Set doc = db.createdocument
............
Call doc.replaceitemvalue("Subject", "Excel message")
............
Call doc.Send(False)

Using the session object we can get a database instance and set it to be the
current user’s mail database by invoking the Openmail method.

Using the database object you can create a new document using the
CreateDocument method.

Finally when you have the document object you can create or replace fields
in the document with the ReplaceItemValue method and you can mail the
document with the Send method.

More Examples
Here are other examples illustrating different ways to access Domino objects
from Visual Basic:

Example 1
This example accesses the current document in the Notes client:

Dim workspace As Object
Dim UIdoc as Object
set workspace = CreateObject ("Notes.NotesUIWorkspace")
set UIdoc = workspace.CurrentDocument()

376 Lotus Domino Release 5.0: A Developer’s Handbook

To access the current document (NotesUIDocument object) in Visual Basic,
you first need to get a reference from NotesUIWorkspace. Then you use the
CurrentDocument property of the NotesUIWorkspace class to get the
reference to the NotesUIDocument class. You declare workspace as an object
which references NotesUIWorkspace. You declare UIdoc as an object which
references NotesUIDocument.

Dim workspace As Object
Dim UIdoc As Object

Create an externally creatable object.

set workspace = CreateObject ("Notes.NotesUIWorkspace")

Use the externally creatable object to access a lower-level object doc.

set UIdoc = workspace.CurrentDocument()

Example 2
This example accesses the view called “By Author” in the Domino database
test.nsf.

Dim session As Object
Dim db As Object
Dim view As Object
Set session = CreateObject ("Notes.NotesSession")
Set db = session.GetDatabase("","test.nsf")
Set view = db.GetView ("By Author")

To access the NotesView class, you get the reference to NotesView from the
NotesDatabase class. Since NotesDatabase is not an externally creatable
object, you will get its reference from a higher-level class of the hierarchy,
which is NotesSession. You get the reference to NotesDatabase using the
GetDatabase method of the NotesSession class. Then you get the reference to
NotesView using the GetView method of NotesDatabase.

We declare session as an object which references NotesSession.

Dim session As Object

We declare db as an object which references NotesDatabase.

Dim db As Object

We declare view as an object which references NotesView.

Dim view As Object

Chapter 11: Advanced Domino Programming 377

We get the reference to NotesSession by using the CreateObject function of
Visual Basic, and store it in session.

Set session = CreateObject ("Notes.NotesSession")

We get the reference to NotesDatabase using the GetDatabase method of
NotesSession, and store it in db.

Set db = session.GetDatabase("","test.nsf")

We get the reference to NotesView and store it in view.

Set view = db.GetView ("By Author")

Example 3
This example shows how to access NotesItem in the current document in the
Notes client:

Dim workspace As Object
Dim UIdoc As Object
Dim doc As Object
Dim item As Object
Set workspace = CreateObject ("Notes.NotesUIWorkspace")
Set UIdoc = workspace.CurrentDocument
Set doc = UIdoc.Document
Set item = doc.GetFirstItem ("Subject")

The item you are accessing is an item in the current document. So you need
to get the document reference from NotesUIDocument. This is not an
externally creatable object. Therefore, we first get the reference from
NotesUIWorkspace to get the reference to NotesUIDocument and then to the
other lower-level classes.

We declare workspace, UIdoc, and doc as objects.

Dim workspace As Object
Dim UIdoc As Object
Dim doc As Object

We declare item as an object which references NotesItem.

Dim item As Object

We get the reference from NotesUIWorkspace and NotesUIDocument.

Set workspace = CreateObject ("Notes.NotesUIWorkspace")
Set UIdoc = workspace.CurrentDocument

378 Lotus Domino Release 5.0: A Developer’s Handbook

We get a reference to NotesDocument using the Document property of
NotesUIDocument, and store it in doc.

Set doc = UIdoc.Document

We get reference to NotesItem using the GetFirstItem method of
NotesDocument to get the first Item named “Subject.”

Set item = doc.GetFirstItem ("Subject")

Note When using Notes classes through OLE automation in Visual Basic,
for some methods, you must use type numbers in arguments rather than
type constants which are used in LotusScript. However, you can always get
the type number using “Messagebox Cstr(TypeConstant)” in LotusScript.
For example, in LotusScript you use the type constant READERS to add a
readers field item to a document:
Dim NewANames As New NotesItem(doc,"DocReaders",array,READERS)

To add a readers field through OLE Automation first get the type number in
LotusScript:

Messagebox Cstr(READERS)

When you execute the code a messagebox with the number 1075 appears.
Thus in your OLE Automation code you must enter:

Dim NewANames As New NotesItem(doc,"DocReaders",array, 1075)

Runtime Errors and Debugging
Run-time errors occur (and are detected by Visual Basic) when a statement
attempts an operation that is impossible to carry out.

When you use Domino object classes in Visual Basic the error-handling code
is especially important because code from the Domino Object Model is used
remotely from within your Visual Basic application. Where possible, you
should include code to handle errors that Domino objects may generate.
When there is a run-time error generated in a Domino object, Domino
handles the errors it can handle, and regenerates the errors which it cannot
handle. Visual Basic will automatically remap untapped errors, and the
error-handling code in your application is needed to handle the errors.

In applications that use Domino objects and derived classes based on
Domino objects, it becomes more difficult to determine where an error
occurs.

Chapter 11: Advanced Domino Programming 379

The following figure shows a Visual Basic application that consists of a form
module, which references a class module, which in turn references a Domino
ACL object.

Regenerating Errors Between Forms, Classes, and OLE Automation
Domino Objects
Domino handles the part of the error arising in the Domino object. If Domino
cannot handle a particular error arising in the NotesACL, but regenerates it
instead, Visual Basic will pass the error to the referencing object,
MyClassACL. Visual Basic automatically remaps untapped errors arising in
objects outside of Visual Basic as error code 440.

The MyClassACL object can either handle the error (preferable), or
regenerate it. The OLE interface specifies that any object regenerating an
error that arises in a referenced object should not simply propagate the error
(pass it as error code 440), but should instead remap the error number to
something meaningful. When you indicate the error condition, if your
handler can determine what the error is, it should map it to an undefined
error number. Add the new number to the intrinsic Visual Basic constant
vbObject Error to notify other handlers that this error was raised by your
object (MyClassACL).

Whenever possible, a class module (MyClassACL module in our case)
should try to handle every error that arises in the object. It references errors
that are not handled by that object. However, there are some errors that it
cannot handle because it cannot anticipate them. There are also cases where
it is more appropriate for the referencing object to handle the error, rather
than the referenced object.

When an error occurs in the form module, Visual Basic raises one of the
predefined Visual Basic error numbers as described in the online Help.

When you regenerate an error, leave the error object’s other properties
unchanged. If the raised error is not trapped, the Source and Description
properties can be displayed to help the user take corrective action.

380 Lotus Domino Release 5.0: A Developer’s Handbook

A class (MyClassALC) module might include the error handler to
accommodate any error it might trap, regenerating those it is unable to
resolve.

Debugging a Visual Basic Application That Uses OLE Automation
When you are debugging an application that has a reference to an OLE
automation object or a class defined in a class module, you may find it
confusing to determine which object generates an error. To make this easier,
you can select the Break in Class module option on the Advanced tab of the
Options dialog box (available from the Tools menu). With this option
selected, an error arising in a form or standard module will invoke an error
handler, if one is available. An error in a class module or an object in another
application that is running in another instance of Visual Basic will cause that
class to enter the debugger’s break mode, allowing you to analyze the error.
An error arising in a compiled object will not display the debug window in
break mode; rather, such errors will be handled by the object’s error handler,
or trapped by the referencing module.

Accessing Other Applications From Notes Using OLE Automation
Just as other applications can utilize Domino functionality through OLE
Automation so can the Notes client utilize functionality in applications that
are OLE Automation Servers. An OLE Server application can provide
services that would require extensive effort to develop in Domino, such as
the cell engine from Excel or 1-2-3 or the sophisticated text handling
capabilities of Word or Word Pro.

You can embed the OLE Application and its data in a document and let
Domino serve as the container, providing replication, security, and access
control as well as summarizing the data in views and making it possible to
search for information using the Domino Full text indexing capabilities.
Domino provides the very best container for these objects, as it frees users
from having to learn the hierarchical file system (all Domino documents,
even those with objects in them, can have a word-based title). In addition,
the Domino development capabilities and integrated messaging services
make using OLE applications as part of a workflow application fast and
easy.

You can also use an OLE application that is external to Domino without
storing the application or its data in Domino, for example using Automation
your program may transfer some data from Domino to a spreadsheet to
create a chart that is printed using the print engine in the spreadsheet.

Chapter 11: Advanced Domino Programming 381

Classes of OLE Objects
Before giving examples of how to control OLE Automation servers we will
discuss how an OLE application often exposes several classes and how those
classes exhibit different behavior.

When an OLE Application is installed, the names of all the object classes it
exposes for OLE Controllers to utilize are written to the Windows Registry.
For example, Lotus Word Pro registers the following classes during
installation:

• Word Pro.Application

• Word Pro.Document

• Word Pro.SmartMaster

Some of the classes define objects that contain other objects defined by other
classes in the application. A Word Pro.Application object can contain a
number of Word Pro.Document objects. They define different behavior. A
Word Pro.Document object has methods like .Print, .Save, and .Close; but if
you want to create a new document, you must access the Word
Pro.Application object and its .NewDocument method. Using the objects’
properties you can get to their parent objects or the objects they contain.
From a Word Pro.Document object, you can get the handle of the Word
Pro.Application object through the .Application property of the document.
From a Word Pro.Application object, you can get a handle to the active
document using the .Active Document property, and so on. Some OLE
objects are also aggregations of several OLE classes. This means that you can
get properties and execute methods defined in different classes on the same
object. Refer to the documentation for specific applications for further
information on this.

Not all OLE classes in an application define objects that can be embedded in
a Domino document. While you can embed a Word Pro.Document object,
you cannot embed a Word Pro.Application object. However, you can access
the properties and methods of a Word Pro.Application object from an
embedded Word Pro.Document object. It is important that you understand
what class of object you are working with and how you can move to its
parent or one of its siblings through the object properties.

382 Lotus Domino Release 5.0: A Developer’s Handbook

When you are working with LotusScript in Domino Designer, you can see
properties and methods of all registered OLE Classes by going to the
reference tab in the InfoList and selecting OLE Classes in the listbox.

For more details, refer to the documentation that comes with the application
you want to Automate.

LotusScript Functions and Methods to Use for OLE Applications
When working OLE applications in LotusScript you have several options to
choose from. First we will briefly mention the functions and methods you
can use. Then read on for some actual examples of OLE Automation.

CreateObject Function
Creates an OLE Automation object of the specified class.

CreateObject (className)

You get the className (like “Word Pro.Application”) from the application
documentation.

Note OLE Automation objects created with the CreateObject function are
external to Domino. They cannot be embedded in documents. You must use
the CreateObject method of the NotesUIDocument class to embed objects.

GetObject Function
Opens an OLE Automation object contained in an application file, or returns
the currently active OLE Automation object of the specified class.

GetObject (pathName [, className])

Specify either a pathName or a className. If you specify a className you
will get a handle to the current object of the specified class. Using a
pathName as parameter is similar to double-clicking the file name in the

Chapter 11: Advanced Domino Programming 383

Explorer, with the added value that you get a handle to the object. As with
the CreateObject function, you cannot use this function for embedding
objects in Domino documents.

CreateObject Method in NotesUIDocument Class
In a document in Edit mode, embeds an OLE object in the current rich text
field.

notesUIDocument.CreateObject([name [, className [, pathName]]])

The name parameter is optional. If you name the embedded object you can
later get to the object using that name. You must either specify a className
or refer to an existing file with the pathName parameter. Refer to the OLE
application documentation for which className to use, or see “How to
Determine the Class Name of an Object to be Embedded” later in this
chapter.

GetObject Method in NotesUIDocument Class
Given a name, returns a handle to the OLE object of that name.

notesUIDocument.GetObject(name)

You can use this to get to an OLE object embedded manually or by the
CreateObject method in NotesUIDocument. Use the name specified when
creating the embedded object. The name of manually embedded object is the
name displayed in the listbox in the Create Object dialog. You can see the
name of an embedded object by selecting it in the Domino document. Then
an extra menu appears in the Notes client. The name depends on the type of
embedded object (Worksheet, Document, Chart etc.). Click the menu and
then select Object Properties from the menu. This opens the properties box
for the object. On the first tab you can see the object name.

Note The Create Object and GetObject functions take different parameters
than the methods with the same names.

EmbedObject Method in NotesRichTextItem
Depending on the parameters, it creates an attachment, an embedded object,
or a link in a rich text field.

For embedding objects, this method works in the same way as the
CreateObject method in NotesUIDocument, except that this method returns
an instance of NotesEmbeddedObject that has methods for further
manipulation of the embedded object.

GetEmbeddedObject Method in NotesRichTextItem
Given the name of a file attachment, embedded object, or object link in a rich
text item, returns the corresponding NotesEmbeddedObject.

384 Lotus Domino Release 5.0: A Developer’s Handbook

Activate Method in NotesEmbeddedObject
Causes an embedded object or object link to be loaded by its OLE application
and returns a handle to the OLE object:

notesEmbeddedObject.Activate(show)

The show parameter is a boolean. True makes the OLE Application visible,
while it is loaded invisible when the False parameter is used.

Using the Activate methods on an NotesEmbeddedObject combines getting a
handle to the OLE object and executing the Activate method of the OLE
object.

Note Even though Activate is listed as a method of the
NotesEmbeddedObject class, it really is a method that is supported by the
OLE class for the embedded object. You do not have to get an instance of
NotesEmbeddedObject to be able to execute the Activate method. Any
function or method that returns a handle to an OLE object can be used. Once
you have the handle, you can use the Activate method against it.

DoVerb Method in NotesEmbeddedObject
Given the name of a verb, executes the verb in an embedded object.

notesEmbeddedObject.DoVerb(verb)

Embedded objects may allow you to issue verbs (like &Open and &Edit)
against them. You can see which verbs an embedded object supports by
right-clicking it to get its menu.

DoVerb does not return a handle to the embedded object, so if you want to
use DoVerb for OLE Automation you must combine its use with the
GetObject function.

Embedding OLE Objects
You can embed OLE objects in Domino documents using LotusScript or you
can do it manually. OLE objects are stored in rich text fields.

Embedding an OLE Object Manually
To embed an OLE object manually:

1. Make sure the document is in edit mode and the cursor is in the rich text
field where you want to place the object.

2. Select Create - Object. The Create Object dialog will be displayed.

3. You have options to embed either an ActiveX control, a new document
for an installed OLE application, or an existing file created with an OLE
application.

Chapter 11: Advanced Domino Programming 385

4. When you have made your selection and clicked OK the object is
embedded and launched ready for you to work on it.

Depending on how the application supports OLE, it is either launched
in-place or out-of-place. An application that is launched in-place stays in the
window of the Notes client, and the menu bar is changed to include the
menu options of the embedded application. If the application has to be
launched out-of-place, or the user specifically has chosen to do so, it will
open in its own application window.

Embedding an OLE Object Using LotusScript
If you want to program the embedding of an OLE Object in a document you
must use LotusScript. Embedding of OLE objects cannot be done in formula
language or JavaScript. In LotusScript you use the CreateObject method of
the NotesUIDocument class (described above).

The current document must be open in edit mode and the cursor must be in
an editable rich text field.

With no parameters, this method displays the Create Object dialog box,
which allows the user to select the object to create.

You can use the handle returned to send commands to the application using
OLE. If you want to do so you must make sure to assign the returned handle
to a global variable, else the OLE application will close when the variable
with the handle comes out of scope (as will happen if you assign it to a local
variable, for example in a button click event).

If you want to embed an existing file as an object, you must use the
GetObject statement to give LotusScript a handle on the object.

How to Determine the Class Name of an Object to be Embedded
When selecting to embed an OLE object manually in the dialog listbox you
will see the names of those classes that represent embeddable objects, but
you only can see the “display name” of the class. You cannot see the
ClassName in the format that is required for embedding a new object using
LotusScript

To determine the name of an object class either refer to the documentation
that came with the application or use the Windows Registry Editor.

You can use the Windows Registry Editor to determine the ClassName of an
application like this:

1. Launch the Windows Registry Editor by typing “regedit” at a command
line prompt.

2. Once the registry is open, expand HKEY_CLASSES_ROOT. A menu of
keys associated with each registered application’s file extension displays.

386 Lotus Domino Release 5.0: A Developer’s Handbook

3. Look for the appropriate key name — normally the file extension
associated with the applications data files — for example the key for a
Lotus 1-2-3 Workbook is “.123”. Select that key to display the folder
contents.

4. When the folder opens, the (Default) Name and Data display in the right
window pane. The Data value displayed for the (Default) is the class
name you use when embedding objects.

In this example you can see that the ClassName for a Lotus 1-2-3 Workbook
object from the Lotus SmartSuite Millennium Edition is
“Lotus123.Workbook.98.”

Note An entry for an application object in the HKEY_CLASSES_ROOT
section of the Registry does not confirm that an application supports OLE
Automation. You must check the application’s documentation for OLE
Automation support.

To create a new blank Word document in the Body field of the current
document in the Notes client, write a script like this:

Dim ws as New NotesUIWorkspace
Dim uidoc as NotesUIDocument
Set uidoc = ws.CurrentDocument
Call uidoc.GotoField("Body")
Call uidoc.CreateObject("Meeting Minutes", "Word.Document.8")

This will embed a new Word document in the rich text field named Body
and launch it with Word.

Adding a Table to an Embedded Word Document
In the example above you did not get a handle to our OLE object because
you just wanted to embed and launch the Word document. In the next
example you can see how to use LotusScript to continue to work with the
document after it has been created. The sample script embeds a Word

Chapter 11: Advanced Domino Programming 387

document, creates a table in the document, and writes text in row 1, cell 2 of
the table.

Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Dim handle As Variant 'handle to the word document
Dim t As Variant 'OLE holder for the table
Dim r As Variant 'OLE holder for the range
Set uidoc = ws.CurrentDocument 'Get a handle to current doc
uidoc.EditMode = True 'Make sure document is in edit mode
uidoc.GotoField("Body") 'Goto the richtext field
Set handle = uidoc.CreateObject("","Word.Document.8")
Set r = handle.Range(0, 0) 'Create a range that points

'to the top left corner
Set t = handle.Tables.add(r,2,2) 'create a 2 by 2 table

'ref'd by the range
Set r = handle.Range(1,2) 'Move into the table
Call r.InsertAfter("Entering cell text using Automation")

This example can easily be expanded to get the text to write in the Word
table from fields in documents in the Domino database, do some more
formatting of the table, and finally print it using the print engine in Word.

Getting Data From an OLE Object Using the Domino Front-End Classes
You just saw how you can send data from Domino documents to an OLE
Object. In the next example, you will see how the data can go the other way.
You have an embedded Excel spreadsheet and you want to transfer the
value in spreadsheet cell (1,1) to the field Num in our current Domino
document:

Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Dim handle As Variant
Dim CellValue as Variant
Set uidoc = ws.CurrentDocument
Set handle = uidoc.GetObject("Microsoft Excel Worksheet")
CellValue = handle.Activesheet.cells(1,1).value
Call UIDoc.FieldSetText("Num", Str(CellValue))

Note When the GetObject method is used, the object name is taken as the
argument. Objects will have names by default when they are created. To
check the name of an object, you give it focus. When the object is
highlighted, it will appear as a menu choice. To see the object name, select
Object - Properties.

388 Lotus Domino Release 5.0: A Developer’s Handbook

Example — Running a Macro In Excel Using OLE Automation
This code shows how to run a macro in an embedded Excel spreadsheet.

Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Dim doc As NotesDocument
Dim v As Variant
Dim eo As NotesEmbeddedObject 'May have to be global
Dim handle As Variant
Set uidoc = ws.CurrentDocument
Set doc = uidoc.Document
Set v = doc.GetFirstItem("Body")
'This tries to get a handle to the richtext field
If Not (v Is Nothing) Then
 'This is error checking if the is no richtext object
 Set eo = v.embeddedobjects(0)
 'Get a handle on the embedded object if there is one
 If Not (eo Is Nothing) Then
 Set handle = eo.Activate(True)
 handle.Application.Run("CopySummary")
 Else
 Msgbox "There is no embedded object"
 End If
 Exit Sub
 End If
 Msgbox "There is no richtext item"
End Sub

This code runs the macro “CopySummary” in the embedded Excel 97
spreadsheet. Often a macro is dependent on whether the spreadsheet is
visible — so remember to check whether you should activate it with the
visibility parameter set to true.

Note If you place this code in a button and want to continue working with
the activated spreadsheet after the code has executed, you must place the
declaration of the object variable in the globals section. This line should be
placed in globals:
Dim eo As NotesEmbeddedObject

If you declare the object within the scope of the button, the object variable
will be destroyed when the script has run, and the spreadsheet will close.

Chapter 11: Advanced Domino Programming 389

Using OLE Automation Without Embedding
If you want to utilize functions in an OLE Server Application without
embedding it in a document, you use one of these LotusScript functions:

• CreateObject

• GetObject

They allow the OLE Automation Controller to access the objects of the OLE
Automation Client. The function, GetObject, is used to open a specific
existing file in the application. Both functions return an OLE Automation
object reference. The Set statement is required to assign this object reference
to a Variant variable type.

Caution CreateObject and GetObject are available as functions in
LotusScript, as well as well as methods of the class NotesUIDocument. They
don’t take the same arguments. Use the methods to work with OLE objects
embedded in a Domino document and the functions to control OLE
applications outside of the Notes client.

Examples of Automating Lotus SmartSuite Applications
Lotus SmartSuite applications use the following object names to expose their
objects for OLE Automation:

• Approach.Application

• Freelance.Application

• Word Pro.Application

• Lotus123.Workbook

Below you will see examples of how to automate SmartSuite applications
external to Domino.

All the sample code uses the CreateObject function to associate variables and
object references returned. The function, GetObject, could be substituted for
CreateObject to open an existing file. For example:

Set xl = CreateObject("Lotus123.Workbook") 'Loads 123
Set xl = GetObject("c:\lotus\123\work\123\sheet.123", _
"Lotus123.Workbook") 'Loads 123 and opens the file sheet.123

The SmartSuite applications Visible property is set to false by default. This is
usually the way an OLE Automation application would work. However, for
these examples the Visible property has been set to true. This is a good
practice for designing and debugging OLE Automation applications.

390 Lotus Domino Release 5.0: A Developer’s Handbook

1-2-3 Example
This code example instantiates a 1-2-3 Object and sets the object to a Variant
variable. The application’s Visible property is set to true. A new 1-2-3
workbook is created and set. A range is set. The contents of the first cell on
the sheet is set to a string. The user is prompted to close the application with
a messagebox. The application is then closed.

 Dim w123 As Variant
 Dim doc As Variant
 Dim r As Variant
 Set w123 = CreateObject("Lotus123.Workbook")
 w123.Application.Visible = True
 Set doc = w123.Application.NewDocument
 Set r = doc.Ranges("A:A1..A:B10")
 r.Cell(0, 0, 0).Contents = "Hello 123 from OLE Application"
 MessageBox "Close 123"
 w123.Application.Quit

Word Pro Example
This code example instantiates a Word Pro Object and sets the object to a
Variant variable. The application’s Visible property is set to true. A new
Word Pro document is created and set. A text string is inserted into the
document. The user is prompted to close the application with a messagebox.
The application is then closed.

 Dim wp As Variant
 Set wp = CreateObject("Word Pro.Application")
 wp.Visible = True
 wp.NewDocument ("WPTest.lwp")
 wp.Text.INSERTTEXT ("Hello Word Pro from OLE Application")
 MessageBox "Close Wordpro"
 wp.Application.QUIT

Approach Example
This code example instantiates an Approach Object and sets the object to a
Variant variable. The application’s Visible property is set to true. A new
Approach document is created (OpenDocument creates a new APR file if
passed a DBF file for the first parameter) and set. The active view name is set
to a string and will appear on the active tab. The user is prompted to close
the application with a messagebox. The application is then closed.

 Dim ap As Variant
 Dim doc As Variant
 Set ap = CreateObject("Approach.Application")
 ap.Visible = True
 Set doc = ap.OpenDocument("videos.dbf", ap.Path & "demo")
 ap.ActiveView.Name = "Hello Approach from OLE Application"
 MessageBox "Close Approach"
 ap.Application.Quit

Chapter 11: Advanced Domino Programming 391

Freelance Example
This code example instantiates a Freelance object and sets the object to a
Variant variable. The application’s Visible property is set to true. A new
Freelance document is created and set. The title textblock on the active page
is set to a string which causes the textblock to remain in Edit mode. The
textblock LeaveEditMode method is called. The user is prompted to close the
application with a messagebox. The application is then closed.

 Dim fl As Variant
 Dim doc As Variant
 Set fl = CreateObject("Freelance.Application")
 fl.Visible = True
 Set doc = fl.NewDocument
 doc.ActivePage.Title.TextBlock.Text = "Hello FLW From OLE"
 doc.ActivePage.Title.TextBlock.LeaveEditMode
 MessageBox "Close Freelance"
 fl.Application.QUIT

Note The help documentation, Developing SmartSuite Applications Using
LotusScript, that ships with SmartSuite explains OLE Automation in more
detail. This help documentation must be selected during the install of
SmartSuite as, by default, it is not installed. If you did not install it during
your initial install of SmartSuite, you can install it using the Custom Install
method.

Troubleshooting
During your work with OLE Automation you may encounter error
messages. This section describes some error messages and what you can do
to troubleshoot the problem further.

“Cannot Create Automation Object” or “Automation Object Error”
Using CreateObject Function
When you run a script that contains the CreateObject function, one of the
following errors occurs:

• Cannot Create Automation Object

• Automation Object Error

Use the following steps to troubleshoot the error:

1. Ensure that the application supports OLE Automation. To do this, check
the documentation for the application.

2. Make sure you have ample disk space available. (It is recommended that
you have at least 10MB of free disk space.)

392 Lotus Domino Release 5.0: A Developer’s Handbook

3. Using RegEdit, check whether you are using the proper syntax to create
the object. See “How to Determine the Class Name of an Object to be
Embedded” earlier in this chapter.

Note An entry for an application object in the HKEY_CLASSES_ROOT
section of the Registry does not confirm that an application supports
OLE Automation. You must check the application’s documentation for
OLE Automation support.

4. After confirming that an application does indeed support OLE
automation, try the CreateObject function for another application (such
as Visual Basic). If the same error is generated, there is likely a problem
with the Registry. You could then take the following steps:

• Reinstall the application.

• If reinstalling does not eliminate the error, you may choose to back-up
your Registry file, delete all references to the application and then
reinstall the application. For directions on backing up your Registry,
refer to the Microsoft Windows 9x/NT documentation and the
Microsoft Web site.

“Instance Member Does Not Exist”
This message appears if the OLE object that you have got a handle to does
not support the method or property that you are trying to work with.

You may have misspelled a property or a method. The error can also occur if
the OLE Automation Server application has been upgraded and the
developer has changed its underlying OLE object model. For example, when
MS Office 95 was upgraded to MS Office 97 the behavior of Excel changed.
For the sample program below the following error would appear after the
upgrade:

"Instance member CELLS does not exist"

The original program was like this:

Dim rtitem as NotesRichTextItem
Dim object as NotesEmbeddedObject
Dim handle as Variant
'...set value of rtitem...
Set object = rtitem.EmbedObject(EMBED_OBJECT, _
"Microsoft Excel Worksheet", "", "Report")
Set handle = object.Activate (False)
handle.Cells(1,1).Value = 100 'THIS LINE CAUSES THE ERROR
handle.Parent.Save

Chapter 11: Advanced Domino Programming 393

The object model had been changed. Formerly, you would get an object that
supported the Cells property when you activated the embedded object. In
the upgraded version this was no longer true. The script had to be changed
as follows:

Dim rtitem as NotesRichTextItem
Dim object as NotesEmbeddedObject
Dim handle as Variant
'...set value of rtitem...
Set object = rtitem.EmbedObject(EMBED_OBJECT, _
"Microsoft Excel Worksheet", "", "Report")
Set handle = object.Activate (False)
handle.Application.Cells(1,1).Value = 100 'CHANGED*
handle.Parent.Save

“The Object’s Application or Class is Not Available”
This message may appear when trying to open an embedded object for
editing. This may be caused by having different versions of the OLE
Automation server application installed on different workstations.

For example, an embedded object has been edited or created with a MS
Office 97 application. If you try to open it with a MS Office 95 application
you will get the message “The object’s application or class is not available.”

Things to Check When You Are Stuck
There are many things that can influence how well an OLE Automation
application works. If you have a problem in your application and are having
trouble resolving the problem, remember to check the following as well:

1. Does the problem exist on more than one machine? Focus on
troubleshooting one machine only. Configuration issues (registry
problems, memory, crashing, and so on) can be addressed only on one
machine at a time.

2. Can you create a new object in Notes using the same OLE server
application? If so, then the OLE server application is registered correctly.
Attempt to embed the object in question into a new Notes document. Try
to narrow down whether the problem is form-specific,
document-specific, database-specific, Notes server-specific, or
object-specific.

3. Can you create a new object in another OLE client?

4. Is the Notes document in Edit mode before you launch the object?

The Notes document must be in Edit mode before launching the OLE
object; otherwise the following error will occur: “Changes will not be
saved in a read-only document”.

394 Lotus Domino Release 5.0: A Developer’s Handbook

Considerations Before Using OLE Embedding/Automation
As we have already described, OLE Automation enables sophisticated
functions to be added to an application without having to write everything
from scratch.

However, it is important to understand that there are Pros and Cons to the
use of OLE Automation and the way that you use it in your application.

Some points to consider are described in the following section.

Can I Control What Version of an OLE Application the User Has
Installed?
This is especially important if application data is to be stored as embedded
objects in Domino documents. If all users are not upgraded at the same time
and the underlying object model in the OLE application has changed, this
could mean that some users (with the previous version of the OLE
Application) cannot get to the data in the embedded objects. Also make sure
that the class names you use for creating new embedded objects are not hard
coded into the application, but are being fetched from profile documents or
similar sources.

The Size Impact of Embedded Objects
A Domino document with an embedded object will be considerably larger
than a similar document that contains the corresponding data in its own
fields. Normally this will not impact performance very much, but if you
have users on lines with low bandwidth this can affect the response time
when opening documents, even just for reading. If you are comfortable with
the inner workings of OLE Automation in your server application, you can
just store the raw data in the Domino document. Then launch the OLE
application at the user’s workstation and build the object on-the-fly as well
as fetch the processed data back to the Domino document using OLE
Automation. Also, consider how much disk space needs to be reserved for
your application.

Time to Launch External Application
If the OLE Automation Server application isn’t already in the workstation’s
memory it can take considerable time to launch it. Make sure that the users
don’t have to wait for the launching application if it only gives them
‘nice-to-have’ functionality. Most users prefer to miss a few advanced
functions if they can get their daily work done in a fast and efficient manner.
Also, be careful with the OLE AutoLaunch options for forms. Let the users
control when they want to launch an application whenever possible.

Chapter 11: Advanced Domino Programming 395

The Lotus Custom Object Toolkit (formerly known as the LSX Toolkit)

What Is a Lotus Custom Object?
A Lotus Custom Object is a dynamic library of objects (or classes) written in
the C++ programming language. You can use these objects from languages
and language interfaces like Java, CORBA, OLE, and LotusScript. You can
treat Lotus Custom Objects just like any other Domino objects. For example,
you can create new objects from their classes, invoke methods, and get their
properties.

Lotus Custom Objects (LCO) were formerly known as LotusScript
eXtensions (LSX) but have changed name because you can access them from
other languages and language interfaces, but for all effective purposes an
LCO is the same as an LSX.

Note The description of the toolkit in this book refers to LSXs instead of
LCOs because it was written before the LSX Toolkit changed name to the
Lotus Custom Object Toolkit. Just remember that an LSX is the same as an
LCO.

The source programming language of LSXs is C++, which enables you to use
APIs of some other applications. After an LSX is loaded by Domino, the LSX
registers its C++ class definitions as corresponding LotusScript classes. This
means an LSX extends the functionality of LotusScript running in Domino,
because it enables any Domino application to connect to resources and
functionality of external applications.

The following figure shows the extended LotusScript capabilities introduced
by LSXs:

Existing
Application

API

Notes
API LotusScri pt API

Operating
System

API

Native
Classes

Notes
Classes

LSX ClassesScriptable
Classes

Core Scripting Capabilities
 of Notes

396 Lotus Domino Release 5.0: A Developer’s Handbook

Using an LSX
Several LSXs for access to Relational Database Management System as well
as for transaction system integration are available. If none of the existing
LSXs fits your needs, you have the option to develop your own LSX. You are
supplied with a LotusScript Extension Toolkit that facilitates the mapping of
your C++ code to LotusScript classes.

You can use all the classes of an LSX in your LotusScript event scripts by
putting the USELSX statement in the “Options” event of the “Globals”
definition section of a script.

Note The USELSX statement offers you two options. You can pass the LSX
name as a library filename including the full path (USELSX
C:\MYLSX\SAMPLE.DLL), or you can use the name that is associated with
that LSX in the LSX class registry. For example, if the LSX is registered as
MYSAMPLE=C:\MYLSX\SAMPLE.DLL, the statement looks like USELSX
*MYSAMPLE. You may prefer the latter because it is much more location
independent.

As soon as you leave the “Globals” section, Domino loads and registers the
LSX. All new classes are now available for your event scripts. LotusScript
performs a type-check of all references to the new classes in your script
against the registered class definitions. Furthermore, when you select Show
browser in the Programmer’s Pane to view the browser, and select
Domino:classes in the combo box, the registered LSX classes are displayed,
including their properties and methods.

If you declare an LSX twice, using the USELSX statement, LotusScript will
use the LSX library that is already loaded.

Finally, it should be noted that an LSX is not so tightly coupled with
Domino. It only interacts with the LotusScript interpreter embedded in
Domino to provide the functionality. For that reason, you may use an LSX in
any Lotus product that supports a LotusScript interpreter of Release 3 or
higher.

Chapter 11: Advanced Domino Programming 397

Using the LSX Toolkit
This section describes the LSX Toolkit. You will learn about its architecture
and how to develop a new LSX.

Overview
The LSX Toolkit is a software development environment that enables you to
implement new LSXs in the C++ programming language.

When Do You Need the LSX Toolkit?
There are certain situations that may lead you to develop your own LSXs:

• Need to access external applications.

For example, an LSX may define classes to access a specific DBMS, a
document management system, or even execute some FORTRAN code.

• Need to access part of an operating system.

For example, an LSX may define specialized classes to gain access to
system resources such as the window system or communication
facilities.

• Need to implement an algorithm where efficiency or code-size
requirements make it undesirable to implement in LotusScript.

In this case, the LSX is not being used to script an extra application, but
as an alternative to using LotusScript itself. The LSX classes are an
alternative (or a supplement) to LotusScript native classes.

• In cases where you wish to preserve Domino as a single user
environment while employing multiple applications.

Software Prerequisites
In order to develop and test an LSX with reasonable efficiency using the
Toolkit, the following software is required on your workstation:

• One of the following supported development platforms:

Windows 3.X, Windows 95, Windows NT (on both the Intel and DEC
Alpha architectures), OS/2 Warp, HP-UX, Sun Solaris, AIX, Macintosh.

• A standard C++ development environment for the development
platform. This includes a C++ compiler, a C++ debugger, the platform’s
linker, and a Make utility.

Note For more detailed information about hardware and software
requirements, refer to the LSX Toolkit Documentation.

• The installed LSX Toolkit.

• The application to be scripted.

398 Lotus Domino Release 5.0: A Developer’s Handbook

What the LSX Toolkit Contains
The LSX Toolkit includes:

• C++ base class source code.

This is intended to be used in your LSX sources.

• Source code for LSX examples.

There are three working examples, including one that provides a
complete LSX template for you to develop an LSX from.

• LotusScript source files.

These are header files that define the LSX API for the LSX builder.

• Build tools and testing tools.

Included Files
The installed Toolkit has the following directory structure:

LSX

BIN

INC

LIB

SRC

COMMON

LSXBENTO

LSXTW

TEMPLATE

LODLTEMP

TESTS

XINC

XLIB

Utility executables and libraries for all platforms

Header files for the LotusScript interface API

Compiled C++ libraries required for any new LSX
implementation (from sources in "SRC\COMMON")

C++ source code required for any new
LSX implementation

Sample: Interactions with Bento Container
Manager

Sample: Text window manipulation
using the native window system

Sample: Template to create new LSXs

Test scripts for sample LSXs

API header files of the applications wrapped by
 the sample LSXs

API libraries of the applications wrapped by the
sample LSXs

Sample: Automatic creation of
C++ class method definitions

Chapter 11: Advanced Domino Programming 399

For the Intel and DEC Alpha platforms, the BIN and LIB subdirectories are
further divided into:

• OS/2

• W16

• W32

• ALPHA

For UNIX platforms, they are divided into:

• AIX

• HP-UX

• SUN

• X86

Each platform subdirectory contains the executables and libraries for a
particular development platform (hidden in the figure). The same applies to
the OBJS subdirectories contained in each of the SRC subdirectories. They
store the compiled object modules of the sources.

Note If you are developing for a single platform, only one of those platform
directories is of interest. On the other hand, if you install the Toolkit on a
network file system accessible from multiple development platforms, this
directory structure serves as a basis for cross-platform development since
you can produce different library formats out of a single source code.

The sources in the SRC\COMMON and SRC\TEMPLATE directories form a
C++ class framework into which you can plug the classes intended to be
used from within LotusScript.

Utilities for Building and Testing
The C++ build tools comprise makefiles for all supported development
platforms as well as front end DO_IT batch-file build utilities.

Certain special LSX build tools are furnished as executable files in the
platform-specific subdirectories of \LSX\BIN:

• LSXLODL, a compiler to convert class member declarations in Lotus
Object Definition Language to C++ definitions of certain tables that an
LSX uses to register with LotusScript.

• LSXTEST, a GUI test frame for writing, running, and debugging
LotusScript scripts, including running LSX modules.

• LSXRUN, a command-line test frame for testing LotusScript scripts,
including running LSX modules. It does not depend on any graphical
user interface.

400 Lotus Domino Release 5.0: A Developer’s Handbook

• LSXREG, for registering your LSX with the platform’s class registry.

Considering the Toolkit Design
Apart from the inherent language features of LotusScript, scripts always
require an embedding application context like Domino that provides them
with “physical” objects to work on. Therefore, the LotusScript instance
responsible for compiling and executing scripts contains an open interface to
be able to connect to an embedding application. This separation of
functionality into embedding and embedded components, and a
well-defined interface between them, forms the basis of the LSX integration.

The Extendible LotusScript Architecture
On startup, Domino creates a LotusScript instance for all further script
processing.

This instance provides certain services via a LotusScript client API which is
accessible by an API identifier, referred to as the LotusScript instance
handle. Domino gets the handle as a result of the creation.

Domino as the embedding application controls the operation of LotusScript
through the LotusScript client API. Domino presents LotusScript source or
compiled code to the LotusScript instance via this API, and LotusScript
compiles and executes.

Crucial to the LotusScript architecture is the fact that the LotusScript client
API contains services to register new classes. Domino uses these services to
register its LotusScript Domino classes.

The implementation of each class is included in the Notes code space: part of
the registration function serves to specify the entry points that the
LotusScript instance can call to execute the scripted behavior. This means
that Domino supplies the LotusScript instance with callback functions that
implement class constructors, methods, and property access.

The same method applies to the integration of an LSX module that is
compiled and linked as dynamic library. First, Domino loads the library and
calls a well-known function entry point in the library with the handle of the
LotusScript client API. Now, this LSX function uses that handle to register
the LSX classes, including the methods and properties that make up the class
definitions. Since the callback functions that implement the registered

Chapter 11: Advanced Domino Programming 401

functions, and the methods of the classes, are also in the LSX library, the
LotusScript instance knows how to execute the external implementation.

Notes Runtime Control

Notes Objects:
Databases, Documents

Interface for
Notes Classes

LotusScript Instance

Notes Client/Server LSX Library

LSX Objects

Interface for
LSX Classes

Compile script
Run script

Access Access

Load

LotusScript Client API Interactions

The following sections describe the interactions between the LSX and the
LotusScript instance embedded in Domino.

LSX Integration
After loading the LSX, Domino obtains the address of the LSX message
procedure. All further communication between Domino and the LSX
happens via this message procedure, defined by a standard set of messages.
The two most important messages are INITIALIZE and TERMINATE for
LSX enrollment.

Having retrieved the message procedure address in the LSX, the first
message Domino sends to the LSX is INITIALIZE, passing the LotusScript
instance handle as a parameter.

As mentioned previously, it is possible that an LSX is simultaneously used
by more than one Lotus application. For example, if the LSX is a shared
library loaded on a multi-user platform like UNIX, its code may be shared
between multiple Domino workstations, each of them embedding a
LotusScript instance. In that case, the LSX is loaded only once, but it receives
multiple INITIALIZE messages indicating the start of a session with a new
LotusScript instance. The LSX is responsible for maintaining all these
sessions and performing a proper cleanup for each of them when a
TERMINATE message arrives.

402 Lotus Domino Release 5.0: A Developer’s Handbook

LSX Initialization
In the initialization phase, an LSX must register its classes with the
LotusScript instance using the passed handle.

Registering a class means supplying LotusScript with a complete class
definition that will enable processing any runtime operations on the class,
including creating and destroying class instances (objects). The class
definition information includes the class name, class ID, version number,
parent class ID, tables to define the properties, methods, and events of the
class; and other miscellaneous information.

Since the implementation of each function or class is in the LSX’s code space,
LotusScript must call back to the LSX at runtime to create and manipulate
instances of that class. So, part of registering a class is providing a callback
function for the LSX to use at runtime when LotusScript calls back with a
request to carry out operations on objects that the running script has
specified. For a given class, this function is known as the class control
procedure. It must handle the object manipulation messages sent to it by
LotusScript, such as the CREATE message to create an object.

Once the INITIALIZE call returns the LSX is idle, except when it receives a
message that it must respond to.

Object Creation
When an executing script requests a new instance of an LSX class, the
LotusScript instance calls the registered class control procedure for that class
to send the CREATE message. After the new object is created, it is added to a
particular list containing all objects that were created in the current session.

An object presents itself to the LotusScript instance via an object control
interface. LotusScript uses this interface for all further interactions with a
new object. It defines a standard set of messages for object method
invocation and property access.

Object Deletion
Deletions are handled in a similar manner. The LotusScript instance sends a
DELETE message together with an object ID to the appropriate class control
procedure which has to delete the object and update the session object list.

Runtime Manipulations on Objects
The object control interface receives messages for method invocation, setting
and getting properties, and several other messages. The interface must map
the message parameters onto the corresponding LSX class methods and
attributes to gain the intended object behavior.

Chapter 11: Advanced Domino Programming 403

Event Notifications
The LSX class method implementation may raise events to signal special
conditions to the executing script. As provided for in the LotusScript
language, the script can catch them with installed event handlers. Likewise,
LSX methods can cause errors to be raised which are then handled in the
executing script. The LotusScript client API comprises appropriate functions
for that purpose.

Part of the definition for any LSX class that is registered with LotusScript are
the events raised (if there are any), and under what conditions they are
raised.

LSX Termination
Just before destroying a LotusScript instance in which the LSX is loaded,
Domino sends the TERMINATE message to the LSX message procedure. The
LSX is responsible for cleaning up any of its objects that belong to that instance.

In order to guarantee that LSX class objects of other LotusScript instances
remain valid, only the objects of the current session’s object list are cleaned up.

Understanding the C++ LSX Class Framework
The LSX Toolkit supplies you with a set of C++ classes and functions that are
to be used in an LSX on top of the LotusScript client interface. This code
provides higher level services for the LSX, including class registration
utilities, and the infrastructure for handling LotusScript callbacks.

When you develop a new LSX, the Toolkit code forms a framework in the
sense that you can reuse its functionality by deriving your LSX classes from
Toolkit classes, and by extending the implementation of certain global
Toolkit functions. Therefore, you need to know where the supplied classes
and functions are located, and how they interact with each other.

Important LSX Source Files
The directory INC contains C header files for the LotusScript client API. In
the file INC\LSILSX.H, the C++ struct LSsLsxInstance defines the raw
interface through which all communication between the LSX and the
LotusScript instance occurs.

The directory SRC\COMMON contains the following files:

• LSXBASE.HPP

• LSXBASE.CPP

• LSXCOMM.HPP

• LSXCOMM.CPP

404 Lotus Domino Release 5.0: A Developer’s Handbook

They have a central role in any LSX built using the LSX Toolkit.

Note You can use the code in this directory without any modification.

The SRC\COMMON\LSXBASE.[CH]PP files constitute an isolation layer
within the LSX. LSXBASE.HPP defines the LSXBase base class, an abstract
C++ class that every class in your LSX should inherit from. LSXBASE.CPP
implements the base class. This LSXBase class serves mainly as an interface
class; it comprises the object control interface (by which LotusScript accesses
the LSX class objects), and provides your classes with an easy callback
mechanism. Moreover, it performs some of the object protocol messages
automatically, and it contains a linked list implementation for maintaining a
hierarchy of LSX objects.

The files SRC\COMMON\LSXCOMM.[CH]PP constitute most of the
interface between the LSX and Domino and its embedded LotusScript
instance. They provide essential services for the LSX, such as an
implementation for the LSX message procedure, a generalized class control
procedure, and registration utility functions. The directory SRC\TEMPLATE
contains the following files:

• LSXSESS.HPP

• LSXSESS.CPP

• LSXSESS.TAB

• OTHER.HPP

• OTHER.CPP

• OTHER.TAB

They form an actual application, and are intended to be used as a template
for your LSX development.

Note You will need to modify this code for your LSX.

The files SRC\TEMPLATE\LSXSESS.[CH]PP define and implement the
class LSXSession. As described previously, it is possible that an LSX is
connected to multiple LotusScript instances at a time. For each connection, a
single LSXSession object maintains information about the objects created in
it, to ensure a proper session cleanup. Moreover, the file LSXSESS.CPP
contains the (LSX specific) class registration code.

The files SRC\TEMPLATE\OTHER.[CH]PP define and implement a sample
LSX class OTHER derived from LSXBASE.

The files LSXSESS.TAB and OTHER.TAB define static tables containing the
required type information for the LSX class registration. They are
automatically generated with the build tool LSXLODL.

Chapter 11: Advanced Domino Programming 405

Flow of Control Within the Framework
We will now consider how the Toolkit framework implements the
interactions with the LotusScript instance. The main LSX tasks such as
initialization, object creation, and object manipulation, are described from an
implementation point of view. You will find the LSX specific code sections in
the SRC\TEMPLATE files that you have to modify for your LSX.

After being loaded by Domino, an LSX registers its LSX message procedure
LSXMsgProc located in SRC\COMMON\LSXCOMM.CPP. Then, the
LotusScript instance calls that function with an INITIALIZE message
parameter:

COMMON\LSXCOMM.CPP

LSXRegisterOneClass ()

LSXMsgProc ()

LotusScript: UseLSX "*Template"

LSX_MSG_INITIALIZE

TEMPLATE\LSXSESS.CPP

RegisterClientClasses ()
hardwired

In order to register all LSX classes, the message procedure calls the function
RegisterClientClasses. This LSX specific function knows the LSX classes,
namely LSXSession and Other, retrieves the type information from the static
tables in the .TAB files, and registers each of them with a separate call to the
function LSXRegisterOneClass. Eventually, this utility function uses the
LotusScript client API to perform the registration.

Note To register your LSX classes, you have to modify the function
RegisterClientClasses.

Part of a class registration is to provide a class control procedure which the
LotusScript instance uses to execute class operations. The Toolkit includes a
generic function LSXClassControl that can be used for all LSX classes. The
function LSXRegisterOneClass registers it as the related callback function.

406 Lotus Domino Release 5.0: A Developer’s Handbook

This callback function is used when LotusScript encounters a New statement
for an LSX class in an executing script.

LotusScript: Dim X As New TEMPLATEOTHER

LSI_ADTMSG_CREATE

Other::Other()

LSXAddToOtherList(this)

COMMON\LSXCOMM.CPP

LSXClassControl ()

TEMPLATE\SESSION.CPP

Class LSXSession

CreateClientObjects ()

TEMLATE\OTHER.CPP

Class Other

COMMON\LSXBASE.CPP

Class
LSXBase

LSXBase::LSXBase

hardwired

The LotusScript instance calls LSXClassControl with the message parameter
LSI_ADTMSG_CREATE and the ID of the LSX class. Because class object
creation requires LSX specific knowledge, it simply passes the call to the
function CreateClientObjects.

Now, this function decides on the given class ID what kind of object is to be
created, and calls the C++ new operator for this LSX class. As usual with
C++, the constructor of that class first calls the constructor of the base class
(which is always LSXBase). The base class constructor now registers itself
with the session object in that it is created. Furthermore, it saves the given
LotusScript handle as an object attribute so that the LSX class object can use
the LotusScript API later on. Eventually, the body of the LSX class
constructor can implement application specific object initialization as
needed.

When the new LSX class object is created, the function CreateClientObjects
returns a handle to the object control interface to the calling class control
procedure.

The LotusScript instance now uses this handle to manipulate the object. In
fact, the class LSXBase comprises the object control interface, because it is
derived from it. Again, LotusScript accesses this interface by a callback
function, and the Toolkit design strategy is to use the same control
procedure for objects as for classes. This means that the LotusScript instance
finally calls the function LSXClassControl to perform object manipulations,
passing the message together with a class ID, an object handle, and a set of
parameters.

Chapter 11: Advanced Domino Programming 407

Let us now consider an example: a method invocation on a given object.

LotusScript: Call X.Other

LSI_ADTMSG_METHOD

X->LSXDispatchMethod

COMMON\LSXCOMM.CPP

LSXClassControl ()

TEMLATE\OTHER.CPP

Class Other

COMMON\LSXBASE.CPP

Class
LSXBase

X->LSXDispatchMethod

Virtual function call

LSXOtherMethod

Receiving an LSI_ADTMSG_METHOD message, the LSXClassControl
function first converts the given object handle into an LSXBase object. Then,
it calls the method LSXDispatchMethod on that object which is defined as
pure virtual function in LSXBase. Therefore, it actually calls the function
defined in the derived class Other. Now, this function determines which
method invocation is requested (by looking at the method ID), calls it, and
passes the return value back to the caller.

As you can see, method invocation on objects is a very straightforward
implementation. It takes advantage of the class LSXBase which is designed
as an interface class. Other runtime manipulations occur in the same manner.
For example, a script statement to access an Other object property is sent as a
LSI_ADTMSG_PROP_GET message to the function LSXClassControl which
calls the method LSXGetProp on the LSXBase object. Again, the function is
declared as virtual, and the object is actually of class Other, so that the
function LSXGetProp in the Other class is called. Finally, this function is
provided with the property ID, and can take the appropriate action.

Other interactions between the LotusScript instance and the LSX, such as
object deletion and LSX termination, are almost done automatically. The
implementation of the LSXSession class ensures a proper cleanup per
session, and calls the destructor of any other LSX class objects as needed.

LSX Design Decisions
The following section contains some general design considerations for all
LSX implementations.

408 Lotus Domino Release 5.0: A Developer’s Handbook

LSX Class Design
You need to consider what kinds of data structures to use to represent the
object attributes in your class model.

Besides scalar types such as INTEGER, LONG, SINGLE, DOUBLE,
CURRENCY, STRING, or VARIANT, LotusScript supports arrays and lists.
Beyond it, you can use any of the classes you define in the LSX. All of these
data structures are available for declaring and using as data members of
your LSX classes. The same is true for the parameters and return value types
of the class methods.

Note This implies that you cannot directly interface to the Domino product
classes such as NotesDocument. You have to break them down to the types
LotusScript supports.

A further way to structure an LSX class is to define and register it as a
collection class. A collection class is a container of items that can be accessed
directly via indexing or via the LotusScript ForAll language iteration
construct. The allowable language constructs are to access the values, the
properties, and the methods of an individual item, or of every item in the
collection.

Object Control Interface
LotusScript follows the conventions of a COM (Common Object Model)
interface in accessing client objects. It is the object control interface, a C++
structure named ILsiADTControl.

Either the ILsiADTControl structure may be contained as a member in the
definition of each class, or the base class LSXBase may inherit from it. The
usual design strategy, and the default in the Toolkit examples, is inheritance.

In future releases, it is planned to include an OLE adapter in the Toolkit
enabling you to expose objects in any of your LSX classes to OLE
automation. This technique will require the ILsiADTControl to be inherited.
For now, we recommend using the default, letting the LSXBase class inherit
from ILsiADTControl.

In the Toolkit, the high-level flag variable EMBED_ADT governs the choice.
It is referenced when building object files for the example LSXs, using the
makefiles which are included. By default, the EMBED_ADT flag is
undefined, so that the example LSXs compile with ILsiADTControl
inherited.

Character Sets
Another design decision is what character set to use to represent
LSX-maintained strings that must be passed to the LotusScript instance.

Chapter 11: Advanced Domino Programming 409

The LotusScript internal representation is UNICODE. However, an LSX or
an embedding application can specify any of four string communication
representations to LotusScript:

• The platform-native character set (currently ANSI)

• UNICODE

• LMBCS

• ASCII

This means that a string will be presented to LotusScript in that
representation. LotusScript is responsible for converting the string to
UNICODE as needed for its own purposes.

Caution LotusScript will translate string message parameters passed to the
LSX into the representation specified during the class registration. The
current implementation of the utility function LSXRegisterOneClass specifies
the platform-native character set which is sufficient for many, but not all,
applications.

An LSX cannot specify that every string passed between it and LotusScript
uses one of the four representations. Rather, the LSX has to specify which
representation to use for each string individually.

Portability Issues
You need to decide early on whether your LSX is to be written for one
platform or several. Single-platform design allows you to write C++ source
code to take advantage of specific compiler features and system services.
However, the resulting source code may not be portable.

In the LSX Toolkit, the provided C++ framework code is platform-
independent concerning compiler features and system services. A
platform-specific header file is selected and included in those files. The
selection criterion differentiates the platforms 16-bit Windows, 32-bit
Windows, OS/2, UNIX, and Macintosh.

The LotusScript instance offers you standard systems services: memory
management, file management, national language string support,
interprocess communication, dynamic library system, and others. Your LSX
implementation should access these system services only through the
provided LotusScript interface.

Caution The Toolkit overrides the default C++ new operators to use
LotusScript’s memory management services.

410 Lotus Domino Release 5.0: A Developer’s Handbook

Graphical User Interface
As a separately loaded library, you can develop the LSX to present its own
user interface. However, any such interface that you may choose to
implement is independent of Domino, and you cannot build interactions
between them. In particular, an LSX running on a server cannot invoke it.

Globally Unique IDs for LSX Classes
The client object interface is standardized as an OLE2/COM-style interface.
This ensures that client objects are accessed consistently across LotusScript
applications.

So, for each class in your LSX you have to assign a globally unique ID
(GUID) to identify your class with LotusScript. LotusScript will not allow an
LSX to register a class that has the same GUID as an already-registered class.

A GUID is a 16-byte globally unique identifier. In Windows, a GUID is the
same as a Windows GUID used for OLE objects. Some compilers on
Windows platforms include a tool to create GUIDs. For detailed information,
refer to the Toolkit Documentation.

Creating an LSX
This section describes how to create a new LSX.

Currently, setting up the environment for a new LSX is a task where you
have to create several files for the new LSX classes. Beyond that, you have to
make some changes in the files that comprise the Toolkit, namely
LSXSESSION.HPP and LSXSESSION.CPP.

Note This means the first thing you want to do before starting to implement
an LSX, is to copy the sources from SRC\TEMPLATE to a new source
directory SRC\NEWLSX for your LSX. Then, change the SUBSYS entry in
the MAKEFILE.MAK and the Library entry in TEMPL_[NW].DEF to your
LSX name. On Windows, the files LINKRESP.W32 (for 32-bit) and
OBJSRESP.* (for 16-bit) must contain the appropriate directory.

Caution Also, be sure to change every occurrence of “Template” to the
name of the LSX. It is very important that propercase be maintained where
applicable. For example: “Template” to “Newlsxname” and “TEMPLATE”
to “Newlsxname.”

Follow these steps to set up a new LSX class:

1. For each new LSX class, define the properties, methods, and events it
shall have. These definitions are contained in several tables (C++
structure arrays) and constants, stored in a .TAB file. To define them,
you can either directly start with a copy of the OTHER.TAB file and
modify it, or you first define them in the Lotus Object Definition

Chapter 11: Advanced Domino Programming 411

Language, and use LSXLODL to compile them into those tables. Then,
create an .HPP file for the class definition, and use the file OTHER.HPP
as an example of how to structure it. The same applies to the .CPP file
you create for your class. At least, your class must contain a constructor,
a dispatch method, and two more methods to get and set properties.

2. Next, modify the files for the LSXSession class (in the new directory).
Apart from some changes to constants and tables for GUIDs and names,
you must add another list to maintain all objects of the new class as well
as methods to add and delete items in it. Furthermore, update the
registration function to register the new class, and extend the constructor
and destructor to set up the new list member properly.

3. Then, update the file TEXTSTR.HPP to assign IDs to the methods,
properties, and events. In the file GUIDFILE.HPP, define a GUID for
your class. You can always use the existing code as a guideline. It
contains comments that suggest where to put the new code.

4. Finally, make the appropriate changes to the makefile in order to
compile your LSX. If you are developing on a Windows 3.X platform,
you also have to add the path of the new LSX object to be created.

Tip If you don’t want to implement all the functions at once, you can still
build the LSX and use it in your scripts. For all the functions not implemented
yet, simply return the value LSI_RTE_SubOrFunctionNotDefined from
within the class method LSXDispatchMethod so that LotusScript will notice it.

Example
Here is an example of how to add a method NewMethod to the class Other
which has no return value and a single INTEGER argument. Start by setting
up a new LSX source directory as described, and do the following:

1. Make changes in OTHER.TAB.

Extend the method ID table:
static LSUINT other_methodnameids[N_OTHER_METHODS] =
{
 CMYLSX_OTHERMETH_NEW,
 CMYLSX_OTHERMETH_CLOSE,
 CMYLSX_OTHERMETH_OTHER,
 CMYLSX_OTHERMETH_PASSOBJ,
 CMYLSX_OTHERMETH_NEWMETHOD, // the new entry!
};

412 Lotus Domino Release 5.0: A Developer’s Handbook

Create the list of arguments that this method will be receiving:
static LSDATATYPE
NewMethodArgs[N_NEWMETHOD_METHOD_ARGS+1] =
{
 LSX_BYREF_VOID, // return type
 LSX_THIS_PTR, // ptr to created instance
 LSX_BYVAL_SHORT // the INTEGER argument
};

Create a method description used at registration time:
static LSADTMETHODDESCR
other_gmethods[N_OTHER_METHODS] =
{
 //... all previous entries
 { (LSPLTSTR)LSNULL, CTEMPLATE_OTHERMETH_NEWMETHOD,
 NewMethodArgs,
 (LSREGNAME*)LSNULL,N_NEWMETHOD_METHOD_ARGS,
 LSX_REGULAR_PROC,LSI_NO_HELPID, 0 },
};

2. Make changes in OTHER.HPP.

Change the number of methods:
#define N_OTHER_METHODS 5

Add the definition for the number of method arguments:
#define N_NEWMETHOD_METHOD_ARGS 2 // 1 + this

Add the method to the class declaration:
class Other : public LSXBase
{
 public:
 //...
 void NewMethod (PLSADTMSGMETHOD args);
 //...
};

Chapter 11: Advanced Domino Programming 413

3. Make changes in OTHER.CPP.

Extend the dispatcher method:
LSSTATUS Other:: LSXDispatchMethod (PLSADTMSGMETHOD args)
{
 //...
 switch (args->idMeth)
 {
 //...
 case CTEMPLATE_OTHERMETH_NEWMETHOD :
 this->NewMethod (args);
 break;
 default:
 //...
}

Define the new method (it will be more useful later in this chapter):
void Other:: NewMethod (PLSADTMSGMETHOD args)
{}

4. Make changes to LSXSESS.CPP.

Update the LSX name table:
static TEXTTABLE gTemplateNames[] =
{ //...
 {CTEMPLATE_OTHERMETH_PASSOBJ, "PassObject"},
 {CTEMPLATE_OTHERMETH_NEWMETHOD, "NewMethod"},
 //...

Note The table entries occur in the following order: first class names;
then the properties, methods, and events for the first class; then for the
second; and so on.

5. Make changes to TEXTSTR.HPP.

Define the ID for the new method:
//...
#define CTEMPLATE_OTHERMETH_OTHER (LSXBASE_NAMES+482)
#define CTEMPLATE_OTHERMETH_PASSOBJ (LSXBASE_NAMES+483)
#define CTEMPLATE_OTHERMETH_NEWMETHOD(LSXBASE_NAMES+484)
//...

Assuming that you have set up all the files for a new LSX, you may want to
add the specific application logic. The next sections explain how to use
LotusScript data types, variables and method arguments of these types, and
the system services offered by the LotusScript instance.

414 Lotus Domino Release 5.0: A Developer’s Handbook

Using LSX Data Types
The LSX interface headers define macros for common C++ data types to
compensate for platform differences. You are encouraged to use them
instead of the intrinsic C++ language types, because they are widely used
throughout the Toolkit source code, and you should be familiar with them.

Same as LSSSHORT; used for return status values.LSSTATUS

Pointer to x.LSPTR (x)

Pointer to (unsigned) character array.LSPBYTE

Pointer to void (null pointer is LSNULL).LSPVOID

Allowed values: LSTRUE, LSFALSE.LSBOOL

Same as double.LSFLOAT8

Same as float.LSFLOAT4

Same as unsigned long.LSULONG

Same as LONG in LotusScript and signed long in C++.LSSLONG

Same as unsigned int.LSUINT

Same as signed int.LSSINT

Same as unsigned short int.LSUSHORT

Same as INTEGER in LotusScript and signed short int in C++.LSSSHORT

Same as unsigned char.LSUBYTE

Same as signed char.LSSBYTE

Any of the following data type macros but the unsigned
versions; actually a union of all of them plus a member Type
that tells you the type of the value. (See the section “Using
Data Type Descriptions” below).

LSVALUE

MeaningData Type Macro

Chapter 11: Advanced Domino Programming 415

Some more type macros are defined for string data types:

Unicode string; pointer to LSUNICHAR.LSUNISTR

Platform-native string; pointer to LSPLTCHAR.LSPLTSTR

ANSI strng; pointer to LSCLICHAR.LSCLISTR

Unicode string; pointer to LSUNICHAR.LSSTRING

Same as LSUSHORT.LSUNICHAR

Same as LSCHAR.LSCLICHAR

Same as LSCHAR.LSPLTCHAR

Same as char.LSCHAR

MeaningData Type Macro

Finally, the remaining data structures defined in LotusScript are represented
by the following C++ type definitions:

A variant; same as LSPTR (LSVALUE).PLSVALUE

Currency data type in LotusScript.struct LSsCurrency {
 unsigned long Lo;
 long Hi;
}

Variant of data type 7 (as returned by the LotusScript
function “Date”); same as LSFLOAT8: For an explanation,
refer to the LotusScript Language Reference Manual.

LSsDate

Meaning
C++ Data Type
Definition

Using Data Type Descriptions
As you may have already noticed, the argument passing to LSX class
methods is different from the way C++ passes arguments. Instead, an LSX
class method receives a packed array structure as a single argument
containing the actual parameters of the method. Each of the array members
stands for one parameter, and includes information about the data type and
the value.

416 Lotus Domino Release 5.0: A Developer’s Handbook

So, the data type information itself is coded using certain symbolic integer
constants. The basic ones are as follows:

LSsValueUniStr; same as LSPTR (LSUSHORT).LSVT_UNISTR

PLSVALUELSVT_VARIANT

booleanLSVT_BOOLEAN

Depends on the specified character translation. Either a
LSSTRING for UNICODE, or LSPBYTE for LMBCS, or
LSPLTSTR for ANSI.

LSVT_STRING

LSsDateLSVT_DATE

LSsCurrencyLSVT_CURRENCY

LSFLOAT8LSVT_DOUBLE

LSFLOAT4LSVT_SINGLE

LSSLONG (Long data type in LotusScript).LSVT_LONG

LSSSHORT (Integer data type in LotusScript).LSVT_SHORT

NULL value for variants.LSVT_NULL

EMPTY value for variants.LSVT_EMPTY

Related Data TypeLotusScript Data Type Code

Furthermore, there are constants for list and array type descriptions. Refer to
the file INC\LSIVAL.HPP and the LSX Toolkit Documentation for details.

Accessing LSX Class Method Arguments
LSX class method arguments are packed in a single array which is passed to
your method implementation. So, any of your methods will look like this:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)

The type PLSADTMSGMETHOD, defined in INC\LSILSX.HPP, is a pointer
to the following structure:

struct LSFAR LSADTMSGMETHOD
{
 PLSVALUE pArg; // Array of Arguments.
 LSUSHORT nArg; // Number of Arguments.
 LSADTMETHODID idMeth; // Method ID.
 LSADTCLASSID idClass; // class ID for method.
};
typedef LSPTR (LSADTMSGMETHOD) PLSADTMSGMETHOD;

The idClass and idMeth members inform you about the class ID and the
method ID, respectively. The nArg member tells you the size of the pArg
which is actually an array. So, pArg has members from index 0 to nArg - 1.

Chapter 11: Advanced Domino Programming 417

The size depends on whether the method returns a value or not. If it does
not, nArg equals the N_NEWMETHOD_NEWCLASS_ARGS -1, where
N_NEWMETHOD_NEWCLASS_ARGS +1 is the number of method
arguments you specified in the NewClass.TAB file. If the method does
return a value, nArg is equal to this constant.

So, basically you access the message parameters by accessing the pArg
member. It is an array whose members can be of any type, as defined by the
type LSVALUE. But LSVALUE provides you with information about the
type of value, and therefore you should always access a method parameter
in the following way:

// this method doesn't return a value, so it's first
// parameter is at index 0
void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 PLSVALUE pVal = LSNULL;
 // check that the number of passed parameters equals
 // the expected number (means: the declared number of
 // arguments). The constant N_NEWMETHOD_NEWCLASS_ARGS
 // should be defined in NewClass.HPP
 assert (args->nArg == N_NEWMETHOD_NEWCLASS_ARGS - 1);
 //...
 // access the n-th parameter which should be of type
 // INTEGER, for example.
 pVal = &args->pArg[n - 1];
 assert(pVal->Type == LSVT_SHORT);

 // now, it is safe to access the value of the parameter
 LSSHORT nthParm = pVal->vShort;
}

Note To apply this method to a class constructor, simply consider it as a
method with no return value. So, the first argument starts at index 0.

In this example, the method parameter is accessed by the expression
pVal->vShort. In general, to access any of the types whose descriptions are
listed in the previous table, the following definition of the data type
LSVALUE applies:

struct LSsValue
{
 union
 {
 LSSSHORT vShort; // LSVT_SHORT
 LSSLONG vLong; // LSVT_LONG
 LSFLOAT4 vSingle; // LSVT_SINGLE
 LSFLOAT8 vDouble; // LSVT_DOUBLE
 //...

418 Lotus Domino Release 5.0: A Developer’s Handbook

 LSsCurrency vCurrency; // LSVT_CURRENCY
 LSsDate vDate; // LSVT_DATE
 LSSTRING vString; // LSVT_STRING
 //...
 LSsValueBool vBool; // LSVT_BOOLEAN
 PLSVALUE vVar; // LSVT_VARIANT
 //...
 LSsValueUniStr vUniStr; // LSVT_UNISTR
 // —- Convenience Values for callbacks
 // when translation is specified
 LSPBYTE vLmbcs; // LSVT_STRING
 // (translated)
 LSPLTSTR vChars; // LSVT_STRING
 // (translated)
 LSPBYTE vBytes; // LSVT_STRING
 // (translated)
 //...
 }; // end of union
 LSVALTYPE Type; // Value Type
 //...
};

Furthermore, there are members for the types such as lists and arrays. Refer
to the file INC\LSIVAL.HPP and the Toolkit Documentation for details.

LSX Error Values
The data type LSSTATUS is frequently used as a return type, to either return
LSX_OK, or any of the error constants defined in the file INC\LSIERR.HPP.

Accessing LSX Class Property Arguments
For each class with properties exported to LotusScript, you will set up two
class methods NewClass::LSXGetProp and NewClass::LSXSetProp. For the
latter, the question arises how to access the new value that the property
should get.

The declaration is as follows:

LSSTATUS NewClass:: LSXSetProp(PLSADTINSTDESC pInstDesc,
 PLSADTMSGPROP param)

The first argument, pInstDesc, is a pointer to a structure describing the called
object in terms of object control interface, related class ID, and current
LotusScript instance.

Chapter 11: Advanced Domino Programming 419

The second argument is more important since it names the property to be
changed, and the new value. It points to the following structure:

struct LSADTMSGPROP
{
 PLSVALUE valProp; // Property Value.
 LSADTPROPID idProp; // Property Id.
 LSADTCLASSID idClass; // Class ID for this property.
};

The member idProp stores the ID of the property to be changed, as you
registered it in the .TAB file. The valProp member contains the new value of
the property. You use this structure as follows:

LSSTATUS NewClass:: LSXSetProp(PLSADTINSTDESC pInstDesc,
 PLSADTMSGPROP param)
{
 LSSTATUS stat = LSX_OK;
 PLSVALUE pVal = param->valProp;
 LSSSHORT len;

 switch (param->idProp)
 {
 case CTEMPLATE_NEWCLASSPROP_PROPERTY:
 // access property (assuming it's a
 // LotusScript integer)
 len = pVal->vShort;
 //...
 default:
 assert (LSFALSE);
 }
 return stat;
}

Using LotusScript System Services
The LotusScript client API offers you several system services. You are
encouraged to use them rather than directly accessing the operating system
API. This helps you to write LSXs which can be ported to other platforms
more easily.

The following paragraphs give you an overview of some of the
services. For a detailed description, refer to the files contained in the
directory INC\SYS. For example, the file management service is
declared in the file LSSFMGR.HPP; the actual service is enclosed in
SERVICE_DECL_BEGIN(FILEMGR) and SERVICE_DECL_END. It
consists of a set of functions you may call in any of your class methods.

420 Lotus Domino Release 5.0: A Developer’s Handbook

For all but the memory management system service, you have to prepare
your class to use the service.

Preparational Steps
1. First, extend your LSX class slightly by adding a new private member:

class NewClass : public LSXBase
{
 //...
 private:
 //...
 PLSSFILEMGR pFM; // system services file manager
 //...
};

The member type is taken from the file INC\SYS\LSSFMGR.HPP.

2. Then, extend the class constructor to initialize it:
NewClass:: NewClass (LSPTR(LSXSession) s,
 PLSADTMSGCREATE args)
 : //... initialization of base and class members
{
 LShINSTANCE hLSInstance; // LS instance handle for
 // this class object

 // get the instance
 hLSInstance=s->LSXGetInstance();

 // get the file manager service handle
 this->pFM = hLSInstance->Services->pFMGR;
 //...
}

You will find a complete list of available system service handles in the
file INC\LSSRVMGR.HPP. They are defined as members of the
structure LSSsAnchor.

3. Now, your class is ready to access the service in its methods:
void NewClass:: NewMethod (PLSADTMSGMETHOD args)
{
 assert (this->pFM); // check that the file service
 // is available

 //...
 this->pFM->"any FM service function"
}

Chapter 11: Advanced Domino Programming 421

Memory Management Service
The API provides function calls for allocating and releasing heap memory.
When the LSX uses this service, the LotusScript instance gains complete
control over the dynamically allocated memory.

In order to make use of the C++ ability to redefine the new operator, the file
SRC\LSXCOMM.CPP defines a special version of operator new, operator
new [], and a corresponding delete operator that perform calls to the APIs
memory service functions. This means that you don’t have to know the API
memory functions; you will use them implicitly by these C++ operators.

In contrast to the ordinary new operator, the versions defined for LSXs get a
so-called placement argument, a handle to the LotusScript client API. The
following code fragment shows you how to use them:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 LSPTR (LSSSHORT) *aNewInt;
 LSPLTSTR *aNewString

 // create a new integer (always pass this->LsiInst)
 aNewInt = new (this->LsiInst) LSSSHORT;
 // create a new string of length 42 (incl. trailing 0)
 aNewString = new (this->LsiInst) LSPLTCHAR [42];
 //...
 // do something
 //...
 delete aNewInt;
 delete aNewString;
}

File Management Service
The LotusScript client API offers you a rich set of file management functions
including:

• Functions for file access: Open, PathOpen, Close

• Functions to work on file contents: Read, Write, Seek

• Functions for file attributes: GetAttr, SetAttr, DateTime, FileSize

• Directory functions: ChDir, CurDir, MkDir, RmDir, DirFirst, DirNext

422 Lotus Domino Release 5.0: A Developer’s Handbook

The following code gives you an example how to use these service API
functions:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 // Purpose: Open a file, append a text string, and close it

 // set the open flags: lock and access type
 LSUSHORT LSOpenMode = (LASFM_SHARE_EXCLUSIVE |
 LASFM_ACCESS_WRITE);
 lfile hFile; // a file handle

 // try to open the file; it fails when it doesn't exist
 hFile = pFM->Open ("\\lsx\\newmthd.txt", LSOpenMode);

 if (hFile < 0) // it has to be created
 hFile = pFM->Open ("\\lsx\\newmthd.txt",
 LSOpenMode | LASFM_ACCESS_CREATE);

 // seek to the end of the file
 if (pFM->Seek (hFile, 0, LASFM_SEEK_EOF) == LASFM_ERROR)
 {
 // perform error handling!
 }

 LSUSHORT charsWritten;

 // now write the text string...
 charsWritten = pFM->Write (hFile,
 "A text string", 13);
 // ...and append a newline
 charsWritten += pFM->Write (hFile,
 LASFM_EOL, LASFM_EOL_LEN);
 // check that all characters are written
 if (charsWritten != 13 + LASFM_EOL_LEN)
 {
 // perform error handling!
 }

 // close the file
 pFM->Close (hFile);
}

Chapter 11: Advanced Domino Programming 423

Interprocess Services
This service is defined in the file INC\LSSIPC.HPP. It offers some functions
you may already be familiar with from script programming in Lotus
Domino:

• SendKeys

• SendKeysCancel

• Shell

• AppActivate

Platform Services
The platform service definition gives you access to some system values and
functions, for example:

• GetDate/SetDate for handling the system date

• GetTime/SetTime for handling the system time

• Environment to retrieve system environment variables

• MsgBox to display texts in a message box

The following example demonstrates the usage of the MsgBox function. Of
course, the class must be prepared to access the platform service anchor:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 // Purpose: Display a text in a message box.

 // The box shall consist of an information icon
 // and Yes and No buttons
 LSUSHORT button;

 button = pPLAT->MsgBox ("Do you want to see more?",
 4 + 64, // same as MessageBox !
 "Please decide");
 switch (button)
 {
 case 6: // YES
 //...
 case 7: // NO (same return codes as for MessageBox)
 //...
 }
}

424 Lotus Domino Release 5.0: A Developer’s Handbook

Testing an LSX
To test your new LSX during development you can either write event scripts
in a Domino database that use the classes, or you can use a test tool shipped
with the LSX Toolkit.

Because LSX testing isn’t concerned with any of the Domino functionality, it
is much more convenient to use the Toolkit test tools.

The LSXTEST Tool
In general, LSXTEST presents an integrated development environment to
write, compile, execute, and debug LotusScript programs.

In particular, it helps you to write and debug LSX test scripts that contain a
USELSX statement to load the LSX.

For example, LSXTEST allows you to:

• Open, edit, and save LotusScript .LSS files.

• Compile scripts and save the compiled LotusScript modules.

• Load compiled modules.

• Set breakpoints to interrupt script execution.

• View the values of variables and the stack frame for the current
breakpoint during execution.

Many of the features are also available as command line options passed to
LSXTEST, so you can automate most of the test steps.

Example
The Toolkit contains test scripts for all sample LSXs. To load and run one of
them in LSXTEST:

1. Start an LSX development session with a command prompt window.

2. Start LSXTEST. Actually, the command name is different for each
platform. For example, in OS/2, it’s LSXTESTO.

3. Choose File - Open. The file dialog box is displayed.

4. Select one of the test scripts in the directory TESTS, for example TW.LSS.
The script is displayed in a new window.

Note This sequence of steps is also accomplished by invoking LSXTEST
with the script file name.

5. Click the Play button to run the script. It uses the Textwindow sample
LSX to display a new window.

Note Remember to first compile the LSX in the directory SRC\LSXTW.

Chapter 11: Advanced Domino Programming 425

The following figure shows the result:

The LSXRUN Tool
LSXRUN provides a minimal runtime environment for testing scripts. It is
invoked by a command line, and does not require, or depend, on any
graphic user interface.

LSXRUN runs LotusScript source files, and outputs a report of its activities
to the screen and an optional log file. For further details, refer to the Toolkit
Documentation.

426 Lotus Domino Release 5.0: A Developer’s Handbook

Deploying an LSX

The LSX Runtime Environment
The runtime environment of an LSX consists of the following:

• Lotus Domino R5.0. Actually, it can be any Lotus product that supports
the LotusScript interpreter (Release 3.0 or higher).

• The LSX itself.

• The scripted application: the application for which the LSX provides an
object model.

You must know the location where the LSX will eventually execute. If you
define an agent that runs on a server, and it uses the LSX, the location of the
LSX is the Domino server. There are other types of agents, for example
“Manually from Actions Menu,” that will run on the Domino workstation. If
these agents use an LSX, its location is the workstation.

So, the LSX and the scripted application must be available at the location
where they are used.

LSX Installation
To distribute your LSX, you may want to write an installation program that
copies the LSX (and probably the scripted application) to the desired
directory, and performs some necessary initialization tasks such as setting
up environment variables.

The common method to write an installation program is a batch command
file. As your LSX is intended to run on multiple platforms (ideally on all
Domino platforms), the installation program should consider the operating
system used for installation. This allows the installation to behave differently
for different platforms. Look at the Toolkit installation program for examples
of how to differentiate between operating systems.

LSX Registration
The registration of the LSX classes influences the method used for accessing
them from within LotusScript. Either the script loads it by passing a
complete path to the UseLSX statement, or it just references a name in the
LSX class registry.

If you choose the first option, your installation program must copy the LSX
library to the location referenced by the scripts. In fact, it is very difficult to
find pathnames for libraries that consider multiple operating systems, the
different directory structures and drive names, and file name restrictions.

Chapter 11: Advanced Domino Programming 427

Therefore, the class registry is the recommended place to store a complete
path of the LSX library, together with a symbolic name, the key, that you
then use in the UseLSX statements in your scripts. The key uniquely
identifies your LSX on the system. Using this option, LotusScript will look
up the path in the LSX class registry.

You cannot redistribute Lotus’ registration program LSXREG to call it from
the installation program. Instead, you have to write your own registration
procedure for your classes.

In Windows 3.X, the registry is stored in a LotusScript Extension section in
the .INI file. In Windows 95 and Windows NT, the information is stored in
the folder HKEY_LOCAL_MACHINE\SOFTWARE\Lotus\Components\
LotusScriptExtensions\2.0. In all other platforms, the file DOMINO.INI is
used as the class registry.

Summary

This chapter documented and showed examples of some of the more
advanced methods of coding applications for Domino. We discussed Java,
CORBA/IIOP, OLE automation, and showed examples of using the Lotus
Custom Object toolkit.

428 Lotus Domino Release 5.0: A Developer’s Handbook

This chapter contains some of the lessons that have been learned by the team
that wrote this book, both in developing their own Domino applications and
in using the Domino R5.0 code. The chapter does not document the
definitive way to approach a Domino development project, but it does
provide some useful hints and tips that may help you in developing your
own applications.

Before You Write a Single Line of Code

Lesson 1 - Getting a Business Sponsor
How can a Domino development project fail? There can be any number of
causes, but one of the most important ones is that the project does not have
the Full commitment and support of a project sponsor. For a Domino project
to succeed it must be seen as being a high priority project within the
company and the best way to achieve this is to gain sponsorship from as
senior a person in the company as possible.

Lesson 2 - Communication
Once you have a project sponsor you need to ensure that they communicate
the project status on a regular basis to the employees who will be affected by
the application. Domino projects sometimes involve some change for the
people that use the application and, traditionally, people resist change for a
number of reasons, one of which is uncertainty. Regular communication can
help to reduce the level of uncertainly and so make the introduction of the
new application easier.

Lesson 3 - Ensure That There is a Real Business Need
It may seem a strange thing to say, but it is vital to ensure that the
application you are creating has a real business need. Ask yourself and your
customer, “Will people need to use this application?” If the answer is not a
strong YES, then the application will typically become one of the Domino
applications that sits on a server and is used heavily in the first month or two
as people see what the application does, but that usage trails off to a minimal
amount as time goes on.

Chapter 12
Development Do’s and Don’ts

429

Lesson 4 - Understanding the Deliverables
Before you start your project, understand fully with your customer what it is
that you are expected to deliver, and what your customer is expected to
deliver to you in the way of support and access to business resources and
people.

Lesson 5 - Planning Your Application
Domino is categorized into the Rapid Application Development (RAD) tool
set. A RAD tool enables you to build and deploy a functional application in a
very short period of time. While this cuts development time dramatically, it
also means that Domino developers tend to dive straight into creating an
application without going through any planning or design work beforehand.
While this is sometimes an acceptable approach, for example, if you are
creating a very simple database containing one or two forms, anything larger
must definitely be planned and designed thoroughly beforehand.

Lesson 6 - Even Domino Has Limitations
While Domino is one of the most feature-rich development environments
available, it does have some limitations. The trick is in knowing the balance
of when to use Domino to perform a task, and when to use a specialized tool.
For example, the Domino storage capability is constantly increasing and
improving, but you would not store 10 million records in a Domino database
and expect it to perform as a relational database. The Domino database
architecture is designed as a flexible object store that can store many
different types of data, and it is not necessarily the best tool for large
quantities of “plain” data.

Lesson 7 - Project Scope Creep
Make sure that you do not keep adding small functional improvements to
your application that detract from the major development focus. Domino
makes it easy to quickly add a field or a new view, and because of this
ability, development projects can sometimes run longer than intended. It is
important to stay with the original development plan and deliver what was
originally intended. Once the application is ready for deployment, freeze the
design in a template and start working on a Release 1.1 that contains all the
additional features that were requested.

430 Lotus Domino Release 5.0: A Developer’s Handbook

Creating Your Application

Lesson 1 - Use Professional Graphics
We have all tried it. Grab a paint package and create some buttons,
backgrounds and banners for our Domino application. The truth is that
unless you are very artistic your application will suffer from the use of
poorly-designed graphics. Using a professional graphics designer to create
images will improve the users experience of your application dramatically
and will give it a professional touch.

Lesson 2 - Design the Outlook as Thoroughly as Possible
When you are creating an application try to describe the outlook of an
application as thoroughly as possible, so that you don’t spend a lot of time
moving image locations and changing the graphics in your forms, views, or
pages.

Lesson 3 - Try to Standardize on a Web Browser
When creating a Domino application that will be accessed by Web browsers,
try to enforce a standard browser software package and release. While it is
encouraging that the developers of Web browsers continue to push the
boundaries of their products, there are inconsistencies between the different
products and even between different releases of the same product. Although
you have to develop to the lowest common denominator when designing an
application for the Internet, it is sometimes possible to standardize on a
single product and release for an intranet or extranet application where you
are more in control of what software is used to access your servers.

Lesson 4 - Comment Your Code
A very easy thing to do when you are writing your applications but so much
harder to do a month later! Always comment your code so that anyone that
has to support your application at a later stage can easily understand and
modify it.

Lesson 5 - Try to Avoid Hard Coding
When you are developing an application try to avoid hard coding values in
your code or formulas. For example, use the @Subset(@DbName; -1) instead
of writing the database name. This allows the user to change the database
name without causing the code to stop working. Another trick is to create a
simple form with two fields, one as a unique value to display in a view and
the other to contain the variable value. Create a hidden sorted view to
display the unique value and the variable value, and use a formula, such as
myvar:=@dblookup(“”; “”; “MyView”; MyUniqueValue; 2) in the field

Chapter 12: Development Do’s and Don’ts 431

formula. In this way you can just update the value in the document rather
than changing the code.

Lesson 6 - Use the Appropriate Design Elements and Events
Domino offers many events that you can use in your code. Split your code
into small routines that you can use in these events. Make a clear design of
your application, including a list of global variables and switches.

Lesson 7 - Provide Meaningful Error Messages
If the user input does not pass your field verification routines provide the
user with helpful information as to what the application is expecting. For
example, the error message “You have entered a wrong number” gives no
help if you are checking for a number in the range: 1 to 100.

Consider using a Profile document to control whether or not errors are
written to the NotesLog. The log can be sent to the developers for
investigation. This helps you to find errors that occur in production. Also,
write meaningful debug statements. For example, “The specified file could
not be opened” contains no information. It would be better to write “File
<filename> could not be opened.”

Lesson 8 - Document Your Application
We all hate documenting an application design but it is an absolute
necessity. Start with a general overview of the application and then describe
the function for each of the forms, views, subforms, pages, framesets and so
on. A database design document does not mean that you just create a
document from the database design synopsis, which is useful but does not
explain the sequence of events that occur in order to achieve a task.

Lesson 9 - Be Aware of Performance Options
Make sure that you agree with the application owner on how scalable the
application must be, and how users will access it. Even though your
application may start out just being used at one centrally-located
department, it may spread out company-wide or further. Remember when
you add those professional graphics from Lesson 1 that some users may
access the application with the bandwidth you get from a 28.8 Kbps modem.
A graphic that loads in a few seconds when sitting on a high speed intranet
may take much longer to load over a slower line.

Here is some tips on working with views, Full text indexes and agents:

432 Lotus Domino Release 5.0: A Developer’s Handbook

Views
1. Limit the complexity of views. Don’t do calculations in the views. If you

need to do any calculations, do them in the form and save them with the
document. There is a trade-off between the extra disk space it will use
versus the extra time it will take to open the view.

2. Keep keyword and category values as short as possible. This will speed
up indexing.

3. Limit the categorization and sorting of your views. If you can have the
information simply sorted, rather than categorized, you will save LOTS
of time. A view with more than one categorized column is especially
expensive.

4. Use Dynamic View Sort where possible to reduce the number of views in
the database.

5. Use @Now and @Today Functions in views with extreme caution. These
time-related functions invalidate the views causing them to be rebuilt
every time the functions are executed.

6. Set Default Categories as either All Collapsed or All Expanded. This will
allow the Notes system to process requests faster.

7. Avoid frequent indexing. Indexing is CPU intensive and should be kept
to a minimum. That is not to say that you should avoid indexing when it
is really needed. Consider using the “Auto, at most every n hours” index
refresh option.

8. Use the Cache option with @DbLookup and @DbColumn Functions and
select Minimize use of these functions. This will store the results of the
query in a memory cache and avoid expensive lookups. Use temporary
variables to store query results.

9. If you use @DbLookup or @DbColumn, look up a column number, not a
field name.

Full Text Indexes
1. Try to delay indexing of databases which require Full text indexes. Full

text indexing is very expensive in terms of CPU resources and may slow
down server response time.

2. Minimize the use of access control lists with databases containing Full
text indexes. When the index is rebuilt all ACLs must be validated.

3. Use the Case Insensitive option and/or Whole Word for Full text
indexing. This will significantly reduce the cost of updating the Full text
index.

4. Use views to perform structured searches from applications rather than
Full text indexes. View searches are quicker, less resource intensive, and
safer than Full text searches.

Chapter 12: Development Do’s and Don’ts 433

Agents
1. Keep scheduled agents, selection formulas and replication formulas as

simple as possible. When writing the code consider how frequently it
will be executed. The more complex the code, the more time it will take
to execute and the higher the load on the server.

2. For large data sets, use views with selection formulas rather than coding
them into the agent itself. When updating a view the server only has to
update for documents that have changed. Coding the selection formula
into an agent or making the agent check every document in the database
each time it runs can be very time and resource expensive.

Handing Over Your Application to Production

Lesson 1 - Perform Quality Assurance of the Application
Have another experienced Domino developer review your application to
make sure that it is developed according to standards, and is maintainable.
In addition to having an application that is “perfect,” it must also adhere to
the rules of deployment defined by the support organization responsible for
the production environment. Some issues to consider are:

• Does the application require use of Middleware or API programs?

• Are unrestricted agents allowed to run on the production servers?

• Are there any time limits to how long an agent can run?

• Does the application have non-standard backup and recovery
requirements?

Applications that do not adhere to the standard rules of deployment for an
organization may have to be placed on servers dedicated to such
“non-conforming” applications.

Lesson 2 - Supply an Installation Test Verification Case
The System Administrator who installs the application on the production
system cannot be expected to have an intimate knowledge of the application.
Create a few test cases that can be used to verify that the application has
been installed and set up correctly. For example, if you do lookups in other
databases and use a set up document to specify the external database, have
the System Administrator perform an action that triggers the external
lookup.

434 Lotus Domino Release 5.0: A Developer’s Handbook

Lesson 3 - Document the Application Requirements
As well as creating development documentation for your application, you
should also consider what information is required by the users of the
application and the people that have to support it. Depending on the
complexity of the application and the skills of the users you may consider
supplying the following information in addition to the Design Documentation.

Help Desk Instructions
Specify the level of support expected by the Help Desk for this application.
Give an overview of the application, including a list of all prerequisite
systems/products or refer to the design documentation. List contact persons
(application developer, application owner and so on). List known issues and
workarounds. If you supply any training information, refer to that as well.

Training Instructions
The detail required in the training documentation will depend on the
complexity of the application and the skill level of the target users. It can be
a simple statement of the skills level required by the users, such as which
standard courses they should have attended. If more is needed and the
application is rolled out to most users at one time, the training instructions
could be a reference to an application workshop. For a deployment that is
spread over a longer period of time, a specially written “Getting Started”
guide may be required

When Your Application is Deployed in Production

Lesson 1 - Define a Maintenance Server
As soon your application goes into production, the ACL has to be maintained by
the database Manager. If your database is replicated to other servers, define one
server where all the administrative work is performed. For example, changing
the ACL on different servers before replication is performed will end up with
one change getting lost. Provide all involved servers with the appropriate access
rights (be aware of Reader fields), otherwise information and design changes
will not replicate properly, causing inconsistency in your application.

Lesson 2 - Get Feedback From Your Users
Even though you, as the application developer, may have a very good
understanding of the business process your application supports, most often
people with a different backgrounds and skill sets will be the daily users of
the application. Make sure that you collect feedback from these daily users
so that you can incorporate their experience in updates and new
applications.

Chapter 12: Development Do’s and Don’ts 435

There are several ways to do this. Go out to the users in their normal
environment, see how they use the application and listen to their comments.
Look at the Help Desk statistics to determine how much support is required
for the application and in which areas. You could also set up a discussion
database for feedback that the users can reach from within the application.
However, do this only if the discussion database will be monitored by you,
fellow developers, or super users, so that users will get replies.

Summary
This chapter has documented some of the lessons learned when developing
applications with Lotus Notes and Domino. The information given is by no
means a definitive list, or a list of the only considerations to take into account
in your projects, but we hope that they provide you with a better insight into
the wider issues that an application developer needs to consider.

436 Lotus Domino Release 5.0: A Developer’s Handbook

Domino Enterprise Connectivity Services (DECS) is a Domino server task
that allows application developers to link their Lotus Domino databases to
relational databases and access data from them in real time. DECS works by
capturing certain Lotus Domino database events on the server, such as
opening a form and triggering a predefined action on the relational database.

Installing and Running DECS
To load DECS on the Domino server, simply type the following at the server
console:

LOAD DECS

The server will respond with the message, “Connection Server Started”
along with the current date and time.

To shut down the DECS server, type the following at the server console:

TELL DECS QUIT

The server console responds with the message, “Connection Server
Shutdown Complete” together with the current date and time.

To see if DECS is currently running, type SHOW TASKS at the server console
and look for the “Connection Server” task in the listing.

Chapter 13
Introducing DECS and Database Connectivity

437

Supported Data Sources
DECS can provide real-time connectivity to the following data sources:

Continued

• With an OS/2-based server: Oracle SQL*Net Version 2
• With a Windows NT based server: Oracle SQL*Net

Version 1 or 2
• In either case the SQL*Net must be the same version as

the SQL*Net installed on the Oracle data server. A
network connection must exist between the server
machine and the Oracle data server machine via
SQL*Net

• Native Oracle connectivity support requires Oracle
Version 7.2 or later

• OS/2 works only with Oracle 7.3
• Oracle Version 7.3 and HP-UX: You must obtain the

Oracle fix for bug #441647. This patch applies to
Oracle’s libclntsh.sl

• Oracle 8: NotesPump™ and DECS link with Oracle 7.3
libraries, which use SQL*Net for the communications
layer. If you are using Oracle 8 with DECS or
NotesPump, you must install Oracle SQl*Net. You may
use the SQLNET Easy Config to configure SQl*Net.

Oracle

• The ODBC driver appropriate to the operating system
• The driver must be 32-bit on NT and OS/2
• The ODBC driver must be thread-safe
• The ODBC Administrator must be present
• There must be correctly defined ODBC data sources in

the ODBC Administrator

Open Database
Connectivity (ODBC)

• EDA/Client software for the host operating system.
The EDA/Client version must be Release 3.2 or later
and must be 32-bit on Windows NT and OS/2

• An EDA server on the platform where the EDA
supported database resides

• Connectivity to the EDA server

EDA/SQL

• DB2 Connect Personal Edition
• DB2 Enterprise Edition
or
• DB2 Client Application Enabler (CAE) 2.1.2 or later
• In addition, to connect to DB2 on an AS/400 or

mainframe, a DDCS gateway must be installed

IBM DB2

PrerequisitesSource

438 Lotus Domino Release 5.0: A Developer’s Handbook

• No additional requirements other than access to the
text file

Zmerge Text

• With an OS/2-based or Windows NT-based: System10
Netlib

• A network connection must exist between the Domino
server and the Sybase SQL server via Netlib

Sybase

PrerequisitesSource

Setting Up Connectivity to DB2
This section provides information about the software required to connect to
DB2. This information is provided to help you get started. You should refer
to the documentation for the specific software you are using for complete
instructions.

IBM is currently shipping IBM DB2 UDB Version 5. The specific product to
use will depend on your environment.

Here is a brief listing of connectivity software available with DB2 Version 5:

• DB2 Workgroup Edition: Includes Client Pack CD for client
connectivity, but does not include support for MVS/ESA, OS/390,
OS/400, VM, and VSE.

• DB2 Enterprise Edition: Includes all the functionality of DB2
WorkGroup Edition, plus support for host connectivity providing users
with access to DB2 databases residing on host systems including
MVS/ESA, OS/390, OS/400, VM, and VSE.

• DB2 Client Application Enabler: Enables a client workstation to access
the DB2 server. Refer to DB2 documentation for supported platforms.

• DB2 Universal Database Personal Edition: Formerly known as DB2
Single Server. Enables you to create and use local databases, and to
access remote DB2 databases. Available for OS/2, Windows 95, and
Windows NT.

• DB2 Connect Enterprise Edition: Formerly known as DDCS Multi-user
gateway. Provides access from clients on the network to DB2 databases
that reside on hosts such as MVS/ESA, OS/390, OS/400, VM, and VSE.

• DB2 Connect Personal Edition: Formerly known as DDCS Single-User.
Provides access from a single workstation to DB2 databases residing on
hosts such as MVS/ESA, OS/390, OS/400, VM and VSE. This product is
only available for OS/2, Windows 95, and Windows NT.

Refer to the documentation provided with IBM DB2 Universal Database (the
manual entitled Road Map to DB2 Programming, Appendix A, “About DB2
Universal Database”).

Chapter 13: Introducing DECS and Database Connectivity 439

Testing Connections With LCTEST
Before getting started with DECS there is a useful tool called LCTEST that
helps you determine whether your server is correctly configured to access the
relevant database.

Tip Establishing that your server has been correctly configured at this stage
will potentially save you hours of anguish later.

Before running LCTEST, you must have the appropriate software installed
on the Domino host for each data source you want to test. The remaining
chapters of this manual provide information about the software required for
each of the supported data sources.

Running LCTEST
Follow the steps below to run LCTEST.

1. Locate the LCTEST.EXE program specific to your operating system
platform in the Domino program directory. The LCTEST program has
the following names for each of the associated operating system
platforms:

• NLCTEST.EXE: for Windows 95 or Windows NT (Win32)

• ILCTEST.EXE: for OS/2

• ALCTEST.EXE: for Windows NT/Alpha

2. Double-click the program name to launch it or type the program name at
the system prompt. The LCTEST screen appears, as shown below:

3. Enter the number of the test you want to run and press ENTER.
Depending on the type of data source you are testing, you are prompted
to enter additional information to log in to the specified data source.

440 Lotus Domino Release 5.0: A Developer’s Handbook

DB2 Connectivity Test
You should test for connectivity to the DB2 servers. To test for connectivity:

1. Run the version of the test program LCTEST, located in the Domino
program directory appropriate to your operating system.

2. Select DB2 from the program menu.

3. When the program prompts for a DB2 Database, UserName, and
Password, enter valid connection information. The database must be
cataloged in the DB2 database directory. Refer to your DB2 Client
documentation for further information on configuring a connection to a
database.

4. After entering the DB2 database, user name, and password information,
the program will attempt to connect to the DB2 server. A message will
appear, telling you if the test was successful or not.

5. You can retry a connection by entering Y at the Try Again? [N] prompt.
This enables you to re-enter all of the required information, in case a
mistake was made in spelling or you entered the wrong database, user
name, or password the first time around.

Configuring DECS
There are two methods for configuring DECS to access a supported external
data source:

1. Use the Connection Server Administrator database to create the
Connection and Activity documents.

2. Use the Lotus Connector LotusScript extensions.

We will look at these two options in more detail in the following sections.

Using the Connection Server Administrator
The most simple method of creating a link to a database is by using the
wizards provided. These wizards guide you through a step-by-step process
to connect your Lotus Notes application to an external data source.

Before you can use an external data source, you need to create two
documents in the Connection Server Administrator database: a Connection
document and an Activity document. The Connection document describes
what kind of data source DECS is connecting to and the Activity document
describes what to do with the connection once it has been made. We will
explain more about how to configure these two documents later in this
section.

Chapter 13: Introducing DECS and Database Connectivity 441

The DECS Administrator Navigator
The DECS Administrator navigator allows you to create new Connection and
Activity documents in the database and lets you control the DECS process
running on the server.

The DECS Administrator navigator is shown below:

The Views Section: Selects a view of defined connections for data, or a view
of RealTime activities.

The Green Database Icon: Creates a new data connection. This launches a
form for defining the connectivity necessary to access an external data source.

The Cogs Icon: Creates a new RealTime activity. When the User Assistant is
active, this launches a wizard that prompts you through the process of
defining a RealTime connection between the Domino application and the
external data source. When the User Assistant is turned off, this displays a
blank RealTime Activity document which you can edit.

The Green Start Icon: Begins execution of the currently selected RealTime
activity. This has no effect if the current selection is already executing. This is
disabled when in the Connections view.

The Blue Log Icon: Displays the status of the currently selected RealTime
activity. If the current selection is running, this will display the current status
and any errors that have occurred. If the current selection is not running, this
will display the results of the most recent execution. This is disabled in the
Connections view.

The Red Stop Icon: Ends execution of the currently selected RealTime
activity. This has no effect if the current selection is not running. This is
disabled in the Connections view.

442 Lotus Domino Release 5.0: A Developer’s Handbook

The Tick or Check: Toggles the User Assistant. When turned on, this
enables the RealTime activity wizard and provides additional help. This is
useful for first time and infrequent users. The New Activity button runs a
wizard to guide you through creating the RealTime Activity document and
provides information to assist in the creation and editing of the document.

The Intro Icon: displays the “Help About” document.

The Doc Icon: Displays the online documentation.

The Exit Icon: Closes the Connection Server Administrator.

Creating a Simple RealTime DB2 Connection
Let’s now take a look at how we can create a real time link from a simple
Domino database into DB2.

In the following example, we are going to create a Connection document to
the sample database that ships with DB2, create a simple Domino database
to display the information, and create an Activity document to retrieve the
information from DB2 and display it in the database.

Note The following example assumes that you have already installed and
configured DB2, the SAMPLE database and have a connection to the DB2
server. It also assumes that you have installed DECS and have it running on
the Domino server.

1. If you have not already done so, start the Notes client.

2. Open the Connection Server Administrator database on the server. The
connection navigator is displayed (if it is not, click the Connections
hotspot in the navigator).

Note You cannot open the database locally on your server.

3. To create a new link to the datasource, click the green database icon in
the navigator. The “Other” dialog box is displayed.

4. Select Connection to DB2 and click OK. The Connection to DB2
document is displayed.

Chapter 13: Introducing DECS and Database Connectivity 443

5. Enter the information as shown in the following figure:

Note The User Name and Password may be different on your system.

6. Click the small arrow next to the text Table Selection and wait a few
seconds while the DECS server connects to the database and retrieves a
list of available tables. The DB2 Selection dialog box is displayed with a
list of available tables the user ID has access to.

7. Select the DB2ADMIN.STAFF table and click the OK button. There is a
short delay while DECS accesses the selected table and retrieves a list of
the available fields and their data types — this will be useful later when
creating the Domino application.

8. Click the Save and Close action button. The document is saved and you
are returned back to the Connection Server Administrator navigator.

Creating the Lotus Notes Database
The next stage is to create a database in Domino that contains the fields you
want to retrieve and display from the external data source. To keep it simple,
we are going to create a database with a single form that contains all the
fields from the DB2 table and a single view.

1. Choose File - Database - New from the menu. The New Database dialog
box is displayed. Complete the dialog box with the settings shown in the
following figure and click the OK button to create the database.

444 Lotus Domino Release 5.0: A Developer’s Handbook

2. When the new database has been created, choose Create - Design - Form
from the menu bar. The default blank new form is displayed.

3. By using the information from the DECS DB2 Connection document we
created earlier, we can create a form that contains all the fields from the
DB2 table. In the following diagram the left-hand column has been
copied and pasted from the DECS Connection document, the center
column contains the Notes fields, and the third column lists the Notes
data format.

Note The order of the fields pasted in from the DECS Connection
document has changed.

Chapter 13: Introducing DECS and Database Connectivity 445

4. Save the new form by choosing File - Save from the menu bar, name the
form STAFF and then choose File - Close to close the form.

5. Now let’s create a simple view that contains just the ID field in a column.
Select Views from the Design navigator and open the (*untitled) view.

6. Double-click the first column to bring up the InfoBox and enter ID in the
Title field, click the Sorting tab, select Ascending, and close the InfoBox.

7. Select Field from the Design pane, and select the ID field.

8. Save the view as “1. Staff” and close the view.

Creating the Activity Document
The next step is to create an Activity document for the new database and the
Connection document you created earlier.

1. Open the DECS Connection Server Administrator database.

2. Click the small icon in the navigator with the cogs and a small number
two. This will start the Configuration Wizard by creating a new RealTime
Activity document. A pop-up dialog box with some Help is displayed.
After reading the Help, click the OK button to close the dialog box.

3. The next screen that is displayed is the Select Domino Database dialog
box which contains a listing of all the databases on the server. Select the
DECSDB2.nsf database you created earlier and click the OK button. The
Notes Selection dialog box is displayed.

446 Lotus Domino Release 5.0: A Developer’s Handbook

4. Select the STAFF form from the listing and click the OK button.

5. DECS then needs to know which data source you want to connect your
Domino database to, so select DB2 SAMPLE (using “DB2Admin”) —
DB2Admin.STAFF from the listing and click OK.

6. The next dialog box displayed is the Key and Data Field Mapping dialog
box. This dialog box is split into two sections: the first asks you which is
the unique key that will link the external data source to the Notes
application, and the second asks you which fields should be transferred
from the external data source and mapped to the Domino database fields.

Important The field that you select for the key field from the external
data source must be unique. It is this field that DECS uses to link the
Notes application and the external data source.

In our example the unique key is the ID field, so select this in the
Domino Fields and also in the External Source Fields list boxes.

7. Select all the fields in the bottom Fields section on both sides and click
the OK button.

8. The RealTime Event Selection dialog box is displayed. This dialog box
lets you select which events DECS should monitor on the Domino
server. The options are Create, Open, Delete, and Update. Select Open
from the list and click the OK button.

9. A message appears confirming that the Activity document now has all
the required information to run. After reading this, click the OK button
to close the dialog box.

10. Click the Save and Close button on the Action Bar to save and close the
document.

11. If the Activities view is not displayed, click Activities in the navigator.

Chapter 13: Introducing DECS and Database Connectivity 447

Populating the Lotus Notes Database With Key Data
Before we can access any information from the external data source, we must
populate the Domino database with values from the key column in the DB2
database. Luckily, there is a very simple way to do this courtesy of DECS.

1. From the DECS Connection Server Administrator database, display the
Activities view. If it is not displayed, click Activities in the navigator.

2. Select the activity you created in the previous section.

3. Choose Actions - Tools - Initialize Keys from the menu bar. A warning
message tells you that you are just about to create a new Notes document
in the Domino database for every key in the external data source. Read
this message and click the Yes button to start the process.

4. After a short delay while the DECS server creates the Notes documents, a
message will be displayed telling you how many documents were
created. This number will equal the number of unique keys in the
external data source. Click the OK button to close the message box.

5. Open the DECS DB2 Sample database and you will see that a number of
documents have been created.

Note Only the ID field from the external data source has been copied into
the Notes documents.

Running the DECS Activity
Before you can use the DECS activity, you must start it from the DECS
navigator.

1. From the Activities view, select the activity you created earlier between
the DB2 STAFF table and our DECS DB2 Sample database.

2. Click the green Start button in the DECS navigator. Notice that the status
on the Activity document changes to Starting. After a few seconds,
refresh the view by pressing F9 until the status changes to Active.

3. Open the DECS DB2 Sample database and open any of the documents
displayed in the view. Any fields that contain data in the external data
source will now be displayed in the Notes form.

448 Lotus Domino Release 5.0: A Developer’s Handbook

A Brief Outline of What is Happening
When a RealTime activity has been enabled, DECS opens a link to the data
source and monitors the specified Domino database for certain events, such
as an open event on a particular form.

When a recognized event is captured, DECS reads the Key field value from
the document and generates a query into the external data source to retrieve
the required field values.

DECS then adds these field values into the Notes document and displays it
to the user.

Accessing More Than One Table
More often than not, you will probably need to access data that is stored in
multiple tables rather than a single table, and DECS allows you to do this in
a number of ways.

1. Create a view of your data in the external database. A view is effectively
a table that is created in memory from an SQL SELECT query and, to
most applications, appears as a real table.

Note Don’t get confused between a Notes view and a database view;
the statement above refers to creating a view in the external datasource,
not in Notes.

2. Create multiple connections in the DECS Connection Server
Administration database and use the Monitor Order field to control the
execution of each connection.

3. Create a stored procedure in the database that accepts the required Key
fields to execute an SQL query as an input parameter. It should return
the fields you require to populate your form.

The method that you choose depends on the individual application you are
creating. For example, if you have a large number of tables to join together,
creating a view is probably not a good option because there is a significant
overhead on the external data source database server to generate the view
before the data can be returned.

The simplest method to access data from multiple tables is to create multiple
Connection documents to a data source and specify a different value in the
Monitor Order fields of each.

Chapter 13: Introducing DECS and Database Connectivity 449

Monitor Order
In the following example we will add the employee department name,
division and location from the ORG table of the SAMPLES DB/2 database.

1. Open the STAFF form created in the previous example and add the
following fields to the bottom of the form:

2. To retrieve the DEPTNAME, DIVISION and LOCATION fields from the
DB/2 table we will use the DEPT field as the index field. Because this
field is not stored in the Domino database, but is retrieved from the
DB/2 database using the Activity document we set up earlier, we must
configure the new Activity document to trigger after the first activity has
completed.

3. Create a new Connection document as before, but this time use the ORG
table from the DB/2 SAMPLE database.

4. Create a new RealTime Activity document and select the ORG
Connection document and the Domino database where your STAFF form
is located. Select DEPT and DEPTNUMBER as the key field and
DEPTNAME, DIVISION, LOCATION, MANAGER as the fields to
retrieve from DB/2.

450 Lotus Domino Release 5.0: A Developer’s Handbook

5. Expand the Options - General section and type the value “2” into the
Monitor Order field. The following is a screen capture of the new
Connection document settings:

Note The Monitor Order field value is set to “2” at the bottom of the
screen.

6. Save and close the document by clicking the Save and Close action
button at the top of the screen.

7. Start the activity by clicking the Start button in the navigator.

8. After the activity has started, open the DECS DB2 sample database and
open one of the documents. You will see, at the bottom of the screen, that
the DEPTNAME, DIVISION, LOCATION and MANAGER fields have
been completed with the employee’s information.

Chapter 13: Introducing DECS and Database Connectivity 451

Lotus Connectors LCO
A new Lotus Custom Object (LCO) called the Lotus Connectors LCO (LC
LCO) is delivered with DECS. This LCO allows you to access the functionality
of DECS from within the LotusScript environment and code agents, action
buttons, form events and so on, to perform actions on an external data source.

The classes within the new LCO are:

• LC_Session to handle available connectors and errors.

• LC_Connection to handle the connection to the data source.

• LC_FieldList to handle arrays of row data from the data source.

• LC_Field to handle individual data fields from the data source.

• LC_Currency, LC_Datetime, LC_Numeric, LC_Stream to handle
individual data types.

The Lotus Connectors LCO is similar to the NotesPump LSX, so if you are
familiar with the syntax of the NotesPump LSX it will not take you long to
understand the new LC LCO. There are some excellent example scripts and
documentation provided with the LC LCO that you should look at to become
familiar with the functionality of this LCO. Below is an example to get you
started.

Reading Data From an External Source into a Notes Form
The following example displays employee information in a Notes document
using the SAMPLE database from DB/2 UDB 5. It shows you how to
populate a dynamic keyword list from the external database and then, using
this value as a key field, retrieve additional information on the employee
from multiple tables in the external data source.

Note This code assumes that you have installed the necessary code on your
workstation to connect to DB2. To use this code in production you would
need to install the DB/2 code on each Notes workstation that is to connect to
the data source. You could also install the DB/2 code on the Domino server
and run an agent on the Domino server, or create a Domino Web application
that executes the LC LSX code on the Domino server.

Step 1. Retrieving the Key Values from DB/2
The first step is to populate the keyword field in the Notes document with
the unique keys from the DB/2 database. We have done this by executing
LotusScript code in the PostOpen event of the form. This code logs in to the
DB/2 SAMPLE database and runs a simple query on the EMPLOYEE table to
retrieve a list of all the values in the EMPNO and LASTNAME field. The
retrieved information is added to a keyword field on the Notes document
and the document is refreshed.

452 Lotus Domino Release 5.0: A Developer’s Handbook

1. Create a new form in your database and add a hidden text field called
EmpNoList. Select Allow Multi-Values on the Basics tab of the InfoBox
for the field. On the Advanced Options tab of the InfoBox, select
Commas under Multi-value options.

2. Create a new field called EmpNo and make this field an editable
computed keyword field with the formula EmpNoList (the hidden text
field we have just created).

Chapter 13: Introducing DECS and Database Connectivity 453

3. For the form Options event, add the following code:
USELSX "NLSXLC"

4. For the forms PostOpen event, add the following code:
Sub Postopen(Source As Notesuidocument)
 Dim LC_S As New LCSession
 Dim LC_Conn As New LCConnection("db2")
 Dim LC_FldLst As New LCFieldList(1)
 Dim LC_Field As New LCField(LCTYPE_TEXT, 1)
 Dim Count As Long
 Dim SelectStatement As String
 Dim workspace As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument

 Set uidoc = workspace.CurrentDocument
 On Error Goto ErrorHandler
 LC_Conn.Userid = "db2admin"
 LC_Conn.Password = "password"
 LC_Conn.Database = "SAMPLE"

 LC_Conn.Disconnect
 LC_S.ClearStatus
 LC_Conn.Connect
 debug_a = LC_S.GetStatusText(LC_S.GetStatus)
 ' Perform the select from the EMPLOYEE table
 ' and for display convienience order it by the
 ' lastname field
 SelectStatement = "SELECT * FROM EMPLOYEE ORDER BY
LASTNAME"
 count = LC_Conn.Execute(SelectStatement, LC_FldLst)
 If count <> 0 Then
 count = LC_Conn.Fetch(LC_FldLst, 1, 1)
 Set LC_Field1 = LC_FldLst.GetField(1)
 Set LC_Field2 = LC_FldLst.GetField(4)
 IDs = ""
 LastNames = ""
 While (count > 0) And LC_S.Status = LC_Success
 Ids = Ids + LC_Field2(0) + "|" + LC_Field1(0) + ","
 count = LC_Conn.Fetch(LC_FldLst, 1, 1)
 Wend
 uidoc.FieldSetText "EmpNoList", IDs
 uidoc.refresh
 End If
 End
' Handle any errors we encounter and display a message
ErrorHandler:
 Dim msg As String
 Dim ErrorTxt As String

454 Lotus Domino Release 5.0: A Developer’s Handbook

 Dim msgcode As Long
 Dim Status As Integer
 If LC_S.status <> LCSuccess Then
 status = LC_S.GetStatus(errortxt, msgcode, msg)
 Else
 errortext = "Error: " & Err() & ": " & Error()
 End If
 Messagebox errortxt, MB_IConInformation + MB_OK, "LS
Error"
 End
End Sub

We will now look at this code and explain each section.

5. The first part of the code sets up the connection to the data source and
executes and SQL query.

It sets up the connection using DB2Admin as the Userid to access the
SAMPLE DB/2 database, password as the password and SAMPLE as
the database to connect to:
LC_Conn.Userid = "db2admin"
LC_Conn.Password = "password"
LC_Conn.Database = "SAMPLE"

Now, to make sure that any previous sessions that may have aborted are
cleaned up, we make sure that the connection is disconnected and that
the connection status is reset to normal:
LC_Conn.Disconnect
LC_S.ClearStatus

Now, issue the connect command. You can use the debug_a variable
when debugging to check the status of the connection attempt:
LC_Conn.Connect
debug_a = LC_S.GetStatusText(LC_S.GetStatus)

Create an SQL select statement to retrieve the required data from the
data source. Here we are selecting all columns from the EMPLOYEE
table and ordering it by the employee last names. This is so that when
we display them in the Notes document, they are displayed in a logical
order:
SelectStatement = "SELECT * FROM EMPLOYEE ORDER BY
LASTNAME"

Now execute the SQL statement on the connection and return the values
in to the LC_FldLst variable. Set a variable to the number of rows

Chapter 13: Introducing DECS and Database Connectivity 455

returned. In some data sources this will be -1, meaning that the number
of rows is undetermined, this is not an error:
count = LC_Conn.Execute(SelectStatement, LC_FldLst)

6. Step through each row that is returned from the SQL Select statement
and add it to the text field on the Notes form.

If the value returned from the SQL statement is not zero, that is, there
was no error, fetch a field list record from the data source:
If count <> 0 Then
 count = LC_Conn.Fetch(LC_FldLst, 1, 1)

Now, set two LC_Field variables to the values stored in columns one and
four. In our EMPLOYEE table this is the EMPNO field and the
LASTNAME field:
Set LC_Field1 = LC_FldLst.GetField(1)
Set LC_Field2 = LC_FldLst.GetField(4)

Set two variables to a blank text string:
IDs = ""
LastNames = ""

While the variable count is greater than zero (there are still rows to
retrieve from the data source) and the Lotus Connectors session status is
OK, get each record from the data source:
While (count > 0) And LC_S.Status = LC_Success

Set the value of the variable IDs to the value stored in the LASTNAME
field and add concatenate this together with the EMPNO field. Because
we are building a list we add the comma to the end of each value pair as
the delimiter.

Note In Notes you can set up aliases for keyword fields so that they
display one value, but store another. In this example we are going to use
this feature to display a keyword list field of Lastnames to the user and
use the alias (which is the corresponding EMPNO) to query the data
source. In an alias list, you separate values with the vertical bar:
IDs = IDs + LC_Field2(0) + "|" + LC_Field1(0) + ","

Finally, we set the value of our text field to the value stored in the
variable IDs:
uidoc.FieldSetText "EmpNoList", IDs

456 Lotus Domino Release 5.0: A Developer’s Handbook

7. An example of the values stored in the IDs field is shown below:

ADAMSON|000150, Boulder|000010, BROWN|000200,
GEYER|000050, GOUNOT|000340, HENDERSON|000090,
JEFFERSON|000230, JOHNSON|000260, JONES|000210,
KWAN|000030, LEE|000330, LUCCHESSI|000110, LUTZ|000220,
MARINO|000240, MEHTA|000320, NICHOLLS|000140,
O'CONNELL|000120

8. If you save and test this form, you should be able to see a list of
employee names from the DB/2 EMPLOYEE table displayed in the
Keywords list field.

Note The aliases for LastNames are hidden. Aliases are only used by
the program.

Step 2. Querying the Tables Using the Selected Key Value
The next step in the example is to create the link between the selected
keyword value and the database, so that we can populate the Notes
document with information about the employee.

1. Open the form again in Edit mode and add the following editable
hidden fields. We want these to be hidden because this is a Read-only
document.

FirstNme, text
MidInit, text
LastName, text
Sex, text
Bonus, number
Comm, number
Salary, number
PhoneNo, text
Job, text
WorkDept, text
EdLevel, text
DeptName, text

Chapter 13: Introducing DECS and Database Connectivity 457

DeptName, text
ManagerNo, text
BirthDate, date
HireDate, date

2. Add a hidden text field called SaveOptions and set the default value to
zero (0). SaveOptions is a special field in Notes that does not allow the
user to save the document when set to zero, and always saves the
document when set to one (1).

3. Add a new hidden computed field called EmpNoAlias with a formula of
EmpNo. This is a quick cheat field that we will use to get the alias from
the selected LastName in the keyword field EmpNo.

4. Below is a list of all the hidden fields in the form:

458 Lotus Domino Release 5.0: A Developer’s Handbook

5. Now add corresponding Computed for Display Only fields to the form
and assign the hidden fields as the default values. The following figure
shows the fields on the form:

Note For the Name_Display field, the fields FIRSTNME, MIDINIT and
LASTNAME have been added together.

6. Create a button on the form by choosing Create - Hotspot - Button from
the menu bar. This is the button that we will click to populate the rest of
the fields on the form based on the value selected in the keyword field
EmpNo. For the Click event for the button enter the following code:
Sub Click(Source As Button)
 Dim LC_S As New LCSession
 Dim LC_Conn As New LCConnection("db2")
 Dim LC_FldLst As New LCFieldList(1)
 Dim LC_FldLst2 As New LCFieldList(1)
 Dim LC_Field As New LCField(LCTYPE_TEXT, 1)
 Dim Count As Long
 Dim SelectStatement As String
 Dim workspace As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = workspace.CurrentDocument
 On Error Goto ErrorHandler

Chapter 13: Introducing DECS and Database Connectivity 459

 LC_Conn.Userid = "db2admin"
 LC_Conn.Password = "password"
 LC_Conn.Database = "SAMPLE"
 LC_Conn.Connect
 Debug_A = LC_S.GetStatusText(LC_S.GetStatus)
 EmpNo = uidoc.FieldGetText("EmpNoAlias")
 SelectStatement = "SELECT * FROM EMPLOYEE " _
 "WHERE EMPNO = '" & EmpNo & "'"

 count = LC_Conn.Execute(SelectStatement, LC_FldLst)

 If count <> 0 Then
 count = LC_Conn.Fetch(LC_FldLst, 1, 1)
 uidoc.FieldSetText "FirstNme",
 LC_FldLst.FIRSTNME(0)
 uidoc.FieldSetText "LastName",
 LC_FldLst.LASTNAME(0)
 uidoc.FieldSetText "MidInit",
 LC_FldLst.MIDINIT(0)
 uidoc.FieldSetText "Sex", LC_FldLst.SEX(0)
 Set dt_TempDate = New NotesDateTime(
 LC_FldLst.BIRTHDATE(0))
 uidoc.FieldSetText "BirthDate",
 dt_TempDate.DateOnly
 uidoc.FieldSetText "Bonus",
 LC_FldLst.BONUS(0)
 uidoc.FieldSetText "Comm", LC_FldLst.COMM(0)
 uidoc.FieldSetText "Salary",
 LC_FldLst.SALARY(0)
 Set dt_TempDate = New NotesDateTime(
 LC_FldLst.HIREDATE(0))
 uidoc.FieldSetText "HireDate",
 dt_TempDate.DateOnly
 uidoc.FieldSetText "PhoneNo",
 LC_FldLst.PHONENO(0)
 uidoc.FieldSetText "Job", LC_FldLst.JOB(0)
 uidoc.FieldSetText "WorkDept",
 LC_FldLst.WORKDEPT(0)
 uidoc.FieldSetText "EdLevel",
 LC_FldLst.EDLEVEL(0)
 If LC_FldLst.WORKDEPT(0) <> "" Then
 SelectStatement = "SELECT * FROM DEPARTMENT
 WHERE DEPTNO = '" &
 LC_FldLst.WORKDEPT(0) & "'"
 count = LC_Conn.Execute(SelectStatement,
 LC_FldLst2)
 If count <> 0 Then
 count = LC_Conn.Fetch(LC_FldLst2,1,1)
 uidoc.FieldSetText "DeptName",

460 Lotus Domino Release 5.0: A Developer’s Handbook

 LC_FldLst2.DEPTNAME(0)
 uidoc.FieldSetText "ManagerNo",
 LC_FldLst2.MGRNO(0)
 SelectStatement = "SELECT * FROM
 EMPLOYEE WHERE EMPNO = '" &
 LC_FldLst2.MGRNO(0) & "'"
 Set LC_FldLst = New LCFieldList(1)
 count = LC_Conn.Execute(
 SelectStatement, LC_FldLst)
 If count <> 0 Then
 count = LC_Conn.Fetch(LC_FldLst,
 1, 1)
 uidoc.FieldSetText "Manager",
 LC_FldLst.LASTNAME(0)
 End If
 End If
 End If
 uidoc.refresh
 End If
End
ErrorHandler:
 Dim msg As String
 Dim ErrorTxt As String
 Dim msgcode As Long
 Dim Status As Integer
 If LC_S.status <> LCSuccess Then
 status = LC_S.GetStatus(errortxt, msgcode, msg)
 Else
 errortext = "Error: " & Err() & ": " & Error()
 End If
 Messagebox errortxt, MB_IConInformation + MB_OK, "LS
 Error"
 End
End Sub

Chapter 13: Introducing DECS and Database Connectivity 461

7. This script initially follows the same course as the PostOpen form event.
It sets up a connection to the DB/2 database and then connects to it. The
next step is to send an SQL query to the database to select all rows from
the EMPLOYEE table where the employee number, EMPNO, is equal to
the one selected in the keyword field on the document.

First, we retrieve the value stored in the EmpNoAlias hidden field. This
field only stores the alias for the selected item, not the actual text of the
last name:
EmpNo = uidoc.FieldGetText("EmpNoAlias")
SelectStatement = "SELECT * FROM EMPLOYEE WHERE EMPNO = '" &
EmpNo & "'"

8. Next, check to see if the value of count is zero (0), an error, and if it is
not, fetch the first row from the result set:
If count <> 0 Then
count = LC_Conn.Fetch(LC_FldLst, 1, 1)

9. Start retrieving rows from the result set and display them on the form:
uidoc.FieldSetText "FirstNme",LC_FldLst.FIRSTNME(0)
uidoc.FieldSetText "LastName",LC_FldLst.LASTNAME(0)

For date values you will need to assign them to a NotesDateTime value
and use the relevant property for the type of date field you have set up.
Here we simply use the DateOnly value:
Set dt_TempDate = New NotesDateTime(
 LC_FldLst.BIRTHDATE(0))
uidoc.FieldSetText "BirthDate",dt_TempDate.DateOnly

10. To retrieve the department name, we need to query the DEPARTMENT
table using the value retrieved from the WORKDEPT field in the
EMPLOYEE table. The following code first determines whether there is a
value in the WORKDEPT field and if so generates a new SQL query:
If LC_FldLst.WORKDEPT(0) <> "" Then
SelectStatement = "SELECT * FROM DEPARTMENT
_WHERE DEPTNO = '" & LC_FldLst.WORKDEPT(0) & "'"

11. Finally, the manager’s name is retrieved from the EMPLOYEE table
using the value retrieved for the MGRNO field from the DEPARTMENT
table:
SelectStatement = "SELECT * FROM EMPLOYEE
_WHERE EMPNO = '" & LC_FldLst2.MGRNO(0) & "'"

462 Lotus Domino Release 5.0: A Developer’s Handbook

12. The figure below shows the fully populated Notes document:

In summary, this example has populated a keyword field from a DB/2
database with the last names of employees and used the employee number
as a keyword alias to retrieve data from different tables and display them in
the Notes document.

Note This example shows you how to create multiple select statements on
multiple tables. In a production environment it is likely that you will
construct a single SQL statement joining the tables together, for example:
SELECT A.EMPNO, A.LASTNAME, A.WORKDEPT, B.DEPTNAME
FROM EMPLOYEE A, DEPARTMENT B
WHERE A.WORKDEPT=B.DEPTNO

You will then have all the fields you require in a single result set.

Updating Data From Notes to an External Source
Following on from the example above which read data from a table, the next
logical step is to be able to update those values in the external data source
from information entered into the Notes document.

The following example shows you how to perform a simple update into the
sample DB/2 EMPLOYEE table which contains a unique primary index, the
EMPNO field.

Chapter 13: Introducing DECS and Database Connectivity 463

1. Open the form you created earlier for the READ example above and
create a new button called Update. To create the button choose Create -
Hotspot - Button from the menu

2. For the Click event for the button add the following LotusScript code.
Sub Click(Source As Button)
 Dim workspace As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim srcCon As New LCConnection("db2")
 Dim fldLst As New LCFieldList(1, _
 LCFIELDF_TRUNC_DATA+LCFIELDF_TRUNC_PREC)
 Dim FirstNmeFld, MidInitFld As New LCField(LCTYPE_TEXT, 1)
 Dim LastNameFld, SexFld As New LCField(LCTYPE_TEXT, 1)
 Dim BirthdateFld, Bonusfld As New LCField(LCTYPE_TEXT, 1)
 Dim CommFld, SalaryFld As New LCField(LCTYPE_TEXT, 1)
 Dim HireDateFld, PhoneNoFld As New LCField(LCTYPE_TEXT, 1)
 Dim JobFld, WorkDeptFld,As New LCField(LCTYPE_TEXT, 1)
 Dim EdLevelFld As New LCField(LCTYPE_TEXT, 1)
 Dim EmpNoKeyField As New LCField(LCTYPE_TEXT, 1)
 Dim EmpNo As String
 Set uidoc = workspace.CurrentDocument
 ' Set up our connection to the data source
 SrcCon.Database = "SAMPLE"
 SrcCon.UserID = "DB2Admin"
 SrcCon.Password = "surfer"
 SrcCon.Metadata = "EMPLOYEE"
 SrcCon.Connect
 ' Get the value stored in the EmpNo field on the
 ' Notes document
 EmpNo = uidoc.FieldGetText("EmpNo")
 ' Issue a SQL Select statement to retrieve the row that
 ' we are to update
 SelectStatement = "SELECT * FROM EMPLOYEE

_WHERE EMPNO = '"
 & EmpNo & "'"
 ' Retrieve the row into our FldLst variable
 count = SrcCon.Execute(SelectStatement, FldLst)
 count = SrcCon.Fetch(FldLst, 1, 1)
 ' Make sure that there was no error, for example, we could
not
 ' retrieve a row.
 If count <> 0 Then
 ' These next lines assign our LCFIELD variables to
 ' their counterparts in the LCFIELDLIST array
 Set EmpNoKeyField = fldlst.EMPNO
 Set FirstNmeFld = fldlst.FIRSTNME
 Set MidInitFld = fldlst.MIDINIT
 Set LastNameFld = fldlst.LASTNAME
 Set SexFld = fldlst.SEX

464 Lotus Domino Release 5.0: A Developer’s Handbook

 Set BirthdateFld = fldlst.BIRTHDATE
 Set Bonusfld = fldlst.BONUS
 Set CommFld = fldlst.COMM
 Set SalaryFld = fldlst.SALARY
 Set HireDateFld = fldlst.HIREDATE
 Set PhoneNoFld = fldlst.PHONENO
 Set JobFld = fldlst.JOB
 Set WorkDeptFld = fldlst.WORKDEPT
 Set EdLevelFld = fldlst.EDLEVEL

 ' Copy the values in the Notes document to the
 ' LCFIELD variables
 FirstNmeFld.text = uidoc.FieldGetText("FirstNme")
 MidInitFld.text = uidoc.FieldGetText("MidInit")
 LastNameFld.text = uidoc.FieldGetText("LastName")
 SexFld.text = uidoc.FieldGetText("Sex")
 BirthDateFld.text = uidoc.FieldGetText("BirthDate")
 Bonusfld.text = uidoc.FieldGetText("Bonus")
 CommFld.text = uidoc.FieldGetText("Comm")
 SalaryFld.text = uidoc.FieldGetText("Salary")
 HireDateFld.text = uidoc.FieldGetText("HireDate")
 PhoneNoFld.text = uidoc.FieldGetText("PhoneNo")
 JobFld.text = uidoc.FieldGetText("Job")
 WorkDeptFld.text = uidoc.FieldGetText("WorkDept")
 EdLevelFld.text = uidoc.FieldGetText("EdLevel")

 ' This next line is the important one! It tells the
 ' update which field to use as the key in the data
 ' source, in our case this is the employee number.
 ' If you don't include a key on an update with a
 ' table that does not contain a unique primary key
 ' you will overwrite all records in the database
 ' with this new row.
 EmpNoKeyField.Flags = EmpNoKeyField.Flags Or _
 LCFIELDF_KEY
 ' Issue the update command
 count = SrcCon.Update (fldLst, 1, 1)
 ' Count tells us how may records were updated,
 ' hopefully just the one.
 Print count & " record(s) updated"
 End If
 ' Disconnect from the data source.
 SrcCon.Disconnect
End Sub

Chapter 13: Introducing DECS and Database Connectivity 465

3. Below is a figure of how the screen looks with the new buttons:

This script is similar to the one we used to get data from the external data
source. We set up a connection to the data source in the same way and
executed an SQL query against the source. The major lines of code to look at
are at the bottom:

This first line sets a flag, LCFIELDF_KEY, on the EmpNoKeyField variable to
tell the connection to use this as a key field:

EmpNoKeyField.Flags = EmpNoKeyField.Flags Or LCFIELDF_KEY

The next line issues the update command on the database and returns the
number of rows in the external data source that were modified:

count = SrcCon.Update (fldLst, 1, 1)

Summary
In this chapter we discussed how to create Connection and Activity
documents in the DECS navigator to enable real-time transfer of data from
an external data source into Notes. We also discussed how to use the Lotus
Connectors LSX to access an external data source via LotusScript.

466 Lotus Domino Release 5.0: A Developer’s Handbook

This chapter covers various methods available to connect Domino databases
to and from external applications. The tools covered are NotesSQL, an
ODBC driver that allows you to query Domino databases via SQL, the
Domino JDBC driver, a Java SQL driver that allows you to query Domino
databases through the Java language, and the LS:DO, an ODBC-compliant
LSX for Domino applications.

NotesSQL
NotesSQL is the Lotus Notes ODBC driver for Windows, which enables ODBC
DBMSs and data query tools to access, query, and report on Domino-based
information. ODBC is a de facto standard interface for accessing information
normally stored within an RDBMS. NotesSQL is a SQL API to Domino, with
full level I ODBC 2.0 compliance and many level II extensions.

The current release of NotesSQL is 2.05; it provides the following new
features over previous releases:

• On Windows 95 and Windows NT (Alpha or Intel), new thread-handling
design allows interaction with thread-sharing Internet applications and
reporting tools. It also fixes known problems related to using NotesSQL
with Microsoft Internet Information Server (IIS), Cognos Impromptu,
and Intersolv SequeLink products.

• Additional testing on 32-bit Windows platforms to ensure
interoperability with leading Internet application software. Specifically
tested were: Lotus BeanMachine Release 1.1, IBM Visual Age for Java
(Enterprise) Version 1.0, Microsoft Active Server Pages and Internet
Database Connector (IDC) on IIS 4.0, Microsoft Visual InterDev 1.0, and
NetObjects Fusion Version 2.02.

• The restriction that forced an outer join clause to be the first item in the
FROM clause of a SELECT statement has now been relaxed. The outer
join clause can now be anywhere in the FROM clause.

• NotesSQL now properly evaluates a CR/LF in a text field in a WHERE
clause of a SELECT statement.

• File DSN support.
Note NotesSQL 2.05 should be used with Domino R5.0.

Chapter 14
Using Other Database Connectivity Tools

467

What is ODBC?
ODBC is a call-level interface to databases which has been defined by
Microsoft. In contrast to embedded SQL and PL/SQL, programs using
ODBC are meant to be database-independent. This is achieved by a driver
manager which passes the calls from the application program to the
database. The ODBC library contains function calls that allow an application
to connect to a DBMS, execute SQL statements, and retrieve results.
Furthermore, it defines standard error codes and standard data types.

While embedded SQL is efficient and portable across different hardware and
operating systems, the source code must be recompiled for each new
environment. Additionally the program is tightly coupled with the database
it was compiled for. There is no need for implementation-specific
transformations on the source code of ODBC programs (such as pre-processing).

ODBC is more flexible than embedded SQL in the sense that the same
programs (object code) can be used to access different DBMSs and can ignore
underlying data communications protocols between it and a DBMS.

ODBC Conformance Level of NotesSQL
There are three conformance levels specified in the ODBC API:

• Core Level

• Extension Level 1

• Extension Level 2.

These are just general guidelines, and not all the drivers available today
support all three levels. Moreover, even if an ODBC driver supports a
conformance level, many ODBC drivers conform to both the Core Level or
Extension Level 1 which is a superset of the Core Level.

NotesSQL supports all three levels of conformance except for some APIs of
Extension Level 2. This is described in the Limitations section later in this
chapter.

Core Level
Core Level is a minimum function set of the ODBC specifications. It mainly
supports:

• Allocation and deallocation of the environment

• Connection and disconnection of a database

• SQL preparation and execution

• Fetch data

• Transaction control
Note This is not supported in NotesSQL. Domino does not have a
transaction mechanism.

468 Lotus Domino Release 5.0: A Developer’s Handbook

Extension Level 1
Extension Level 1 extends the Core Level function set. It mainly supports:

• Retrieving the table schema

• Connecting to a database interactively

• Getting and putting data of a result set

Extension Level 2
Extension Level 2 contains more sophisticated functions. It mainly supports:

• Primary key and foreign key

Note This is not supported in Notes, and thus, not in NotesSQL.

The following three features are not supported in NotesSQL:

• Table and column privilege control

• Stored procedure

• Cursor control

SQL Grammar Conformance Level of NotesSQL
The following three levels are available:

Minimum SQL
Minimum SQL only supports the character data type and simple operations.

CHAR
VARCHAR
LONGVARCHAR

Numeric
Operations
(+, -, *, /, <, >,
<=, >=, =, <>)

SELECT
INSERT
UPDATE Searched
DELETE Searched

CREATE TABLE
DROP TABLE

Data TypesExpressionsDMLDCLDDL

Core SQL
Core SQL supports DCL, and many operations and data types.

DECIMAL
NUMERIC
SMALLINT
INTEGER
REAL
FLOAT
DOUBLE

Subselect
Aggregation
(SUM, MIN,
MAX, AVG,
COUNT)

SELECT full
syntax

GRANT
REVOKE

ALTER TABLE
CREATE INDEX
CREATE VIEW
DROP INDEX
DROP VIEW

Data TypesExpressionsDMLDCLDDL

Chapter 14: Using Other Database Connectivity Tools 469

Extended SQL
Extended SQL supports advanced operations, such as cursor related
operations and outer join.

TINYINT,
BIGINT,
BINARY,
VARBINARY,
LONG, BIT,
DATE, TIME,
TIMESTAMP

Scalar
functions

UPDATE Positioned
DELETE Positioned
Outer Join
Cursor Control
SELECT FOR UPDATE

Data TypesExpressionsDMLDCLDDL

Note NotesSQL supports Minimum SQL and some of the other SQL
grammar.

Checking the Conformance Level
If you want to check the conformance levels of your ODBC driver, such as
NotesSQL, the SQLGetInfo ODBC function can help you do this. The
SQLGetInfo function is included in Extension Level 1 as an ODBC API
conformance level.

NotesSQL supports the SQLGetInfo function.

Constant and Function Declarations in Visual Basic
In most programming environments, such as Visual Basic, you need to
describe function declare statements in the ODBC DLL to use the NotesSQL
functions.

In ODBC programs, SQLAllocEnv, SQLAllocConnect, SQLConnect, and
SQLAllocStmt are essential. If required, you can also use SQLDriverConnect
and SQLError.

'** Constant Declarations for SQLGetInfo
'** to check ODBC API and ODBC SQL Conformance Level
Public Const SQL_ODBC_API_CONFORMANCE As Long = 9
Public Const SQL_ODBC_SQL_CONFORMANCE As Long = 15
'** For ODBC API Conformance Level
Public Const SQL_OAC_NONE As Long = 0
Public Const SQL_OAC_LEVEL1 As Long = 1
Public Const SQL_OAC_LEVEL2 As Long = 2
'** For ODBC SQL Conformance Level
Public Const SQL_OSC_MINIMUM As Long = 0
Public Const SQL_OSC_CORE As Long = 1
Public Const SQL_OSC_EXTENDED As Long = 2
'** Options for SQLDriverConnect
Public Const SQL_DRIVER_NOPROMPT As Long = 0
Public Const SQL_DRIVER_COMPLETE As Long = 1
Public Const SQL_DRIVER_PROMPT As Long = 2

470 Lotus Domino Release 5.0: A Developer’s Handbook

Public Const SQL_DRIVER_COMPLETE_REQUIRED As Long = 3
'** Return Code
Public Const SQL_ERROR As Long = -1
Public Const SQL_INVALID_HANDLE As Long = -2
Public Const SQL_NO_DATA_FOUND As Long = 100
Public Const SQL_SUCCESS As Long = 0
Public Const SQL_SUCCESS_WITH_INFO As Long = 1
'** ODBC Functions to issue SQLGetInfo
'** To get an Environment Handle
Declare Function SQLAllocEnv Lib "odbc32.dll" (phenv&) As
Integer
'** To get a Connection Handle
Declare Function SQLAllocConnect Lib "odbc32.dll" (ByVal henv&,
phdbc&) As Integer
'** To establish a connection
Declare Function SQLConnect Lib "odbc32.dll" (ByVal hdbc&,
ByVal szDSN$, ByVal cbDSN%, ByVal szUID$, ByVal cbUID%, ByVal
szAuthStr$, ByVal cbAuthStr%) As Integer
'** To establish a connection with a dialog box
Declare Function SQLDriverConnect Lib "odbc32.dll" (ByVal
hdbc&, ByVal hWnd As Long, ByVal szCSIn$, ByVal cbCSIn%, ByVal
szCSOut$, ByVal cbCSMax%, cbCSOut%, ByVal fDrvrComp%) As
Integer
'** To get a Statement Handle
Declare Function SQLAllocStmt Lib "odbc32.dll" (ByVal hdbc&,
phstmt&) As Integer
'** To get information on an ODBC driver
Declare Function SQLGetInfo Lib "odbc32.dll" (ByVal hdbc&,
ByVal fInfoType%, ByRef rgbInfoValue As Any, ByVal cbInfoMax%,
cbInfoOut%) As Integer
'** To get error information
Declare Function SQLError Lib "odbc32.dll" (ByVal henv&, ByVal
hdbc&, ByVal hstmt&, ByVal szSqlState$, pfNativeError&, ByVal
szErrorMsg$, ByVal cbErrorMsgMax%, pcbErrorMsg%) As Integer

How to Issue SQLGetInfo in Visual Basic
The following program illustrates getting information on the ODBC API
Conformance level. If you don’t need a dialog box to specify a data source
name, you can replace SQLDriverConnect with SQLConnect.

Private Sub Command1_Click()
Dim ret As Integer
Dim msg As String
Dim rInfo As Long
Dim rSize As Integer
Dim connect As String * 255
Dim connectLen As Integer
Dim henv As Long, hdbc As Long, hstmt As Long
'** To get an Environment Handle

Chapter 14: Using Other Database Connectivity Tools 471

ret = SQLAllocEnv(henv)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get a Connection Handle
ret = SQLAllocConnect(henv, hdbc)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To establish a Connection
ret = SQLDriverConnect(hdbc, Me.hWnd, "", 0, connect,
Len(connect), connectLen, SQL_DRIVER_PROMPT)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get a Statement Handle
ret = SQLAllocStmt(hdbc, hstmt)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get ODBC API Conformance Level
ret = SQLGetInfo(hdbc, SQL_ODBC_API_CONFORMANCE, rInfo, 300,
rSize)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
Select Case rInfo
Case SQL_OAC_NONE: msg = "Core Level"
Case SQL_OAC_LEVEL1: msg = "Extension Level 1"
Case SQL_OAC_LEVEL2: msg = "Extension Level 2"
End Select
Text1.Text = "ODBC API Conformance Level (" & rInfo & ") " &
msg
End Sub

472 Lotus Domino Release 5.0: A Developer’s Handbook

How It Works
The following figure shows how the above Visual Basic program works:

When you click the ODBC API button, the ODBC API Conformance Level is
displayed in a text box. The SQL Data Sources dialog box is displayed for you
to specify a data source name, since SQLDriversConnect is issued without
any data source names to establish a connection in the above program.

Technical Advantages
NotesSQL allows the developer to issue SQL statements against Domino
databases. This is a significant advantage to developers who wish to use Domino
data in their applications. In essence, NotesSQL is really an SQL API to
Domino, with full level I ODBC 2.0 compliance and level II extensions.

Structure
The way a target database is accessed from an ODBC client, such as a Domino
database from Visual Basic, is the same as for any other ODBC driver. The
following figure shows how to reach a Domino database from an application
which uses NotesSQL:

Notes
DB

API Call
Client

ODBC Driver
Manager

NotesSQL

Lotus Notes
Server

ODBC
Administrator

VisualBasic,
Access,
Oracle, etc.

ODBC Driver

ODBC.DLL
ODBC32.DLL

Lotus Notes
Workstation DLL Notes

DB

Network

No need to run
Notes Client

Data Resource Registration

Chapter 14: Using Other Database Connectivity Tools 473

When to Use NotesSQL
If you want to access a Domino database from an RDBMS or from another
application development tool, such as Oracle or Visual Basic, use NotesSQL.
NotesSQL is designed for query and reporting tools and other ODBC-compliant
DBMSs and tools to access Domino data. For example, users often need
reports that incorporate data from both Domino and a DBMS. A sales force
automation application can use Domino to capture information from field
sales, such as customer feedback, contact management and sales forecasts,
while customer orders are often managed by DBMSs.

NotesSQL allows an external DBMS or query tool to perform table joins or
combine the data from both sources in the same report. The date of last contact
from the Domino sales force application could be combined with the latest
customer order date via NotesSQL to produce a report on the length of the
sales cycle at a customer site or across a customer set.

Query tools leveraging NotesSQL provide structured data analysis of sales
forecast information stored in Domino. Similarly, that same information
collected in Domino can be pulled into DB2, for central storage and
distribution.

If you already have an ODBC-compliant program to access an RDBMS, you
may also be able to access a Domino database without any modification of
your program. In this case, the only thing you have to worry about is the
difference between an RDBMS and a Domino database, such as data types,
the conformance level of SQL, and so on, as a Domino database is not a
relational database.

Hardware and Software Requirements
To use Domino data through ODBC, you must have:

• NotesSQL, the Domino ODBC driver.

• Lotus Notes Designer for Domino Release 4.6 or Lotus Notes
Workstation release 4.x.

• An ODBC Driver Manager version 2.0 or later.

• One of the following:

• Microsoft Windows 3.1 or later, or

• Microsoft Windows 95, or

• Microsoft Windows NT 3.5 or later, or

• IBM OS/2 Warp or later

474 Lotus Domino Release 5.0: A Developer’s Handbook

Lotus Notes Designer for Domino or Lotus Notes Workstation must be
installed. A full user license is required; desktop and mail IDs are not
supported. Domino database files can reside on a server. You do not need to
have local copies of these files, but you must have at least reader access to
them through Notes.

Installing NotesSQL

All 32-bit Windows platforms (Windows 95 or NT for Intel or Alpha)
1. Run SETUP.EXE and follow the prompts that appear.

Note During installation, a dialog box asks you if you want to install
ODBC 3.0 components or cancel the installation. Click OK to continue.

2. At the end of the installation process, the ODBC Data Source Administrator
dialog box appears so you can add Lotus Notes Data Sources. If you are
upgrading from a previous 2.x version of NotesSQL, note that you do
not have to make any changes to your Data Sources. All your previously
added Data Sources will work with this release.

3. For ease of access, move this documentation database to your Notes data
directory.

16-bit Windows
1. Run SETUP.EXE, which loads Microsoft ODBC Setup, and follow the

prompts.

2. When the Install Drivers dialog box appears, select the NotesSQL driver
and click OK. (You do not need to modify any information in the
Advanced dialog box.)

3. At the end of the installation process, the ODBC Data Source Administrator
dialog box appears so you can add Lotus Notes Data Sources. If you are
upgrading from a previous 2.x version of NotesSQL, note that you do
not have to make any changes to your Data Sources. All your previously
added Data Sources will work with this release.

4. For ease of access, move this documentation database to your Notes data
directory.

OS/2
1. At the command prompt, set the ODBC_PATH environment variable to

the directory where you want to install the driver. For example:
set ODBC_PATH=C:\ODBC

(You do not need to do this if you have already installed the Visigenic
ODBC Driver Manager.)

2. At the command prompt, run SETUP.EXE.

Chapter 14: Using Other Database Connectivity Tools 475

3. When prompted for the installation directory, use the default directory
(the directory specified by the ODBC_PATH environment variable).

4. When the Install Drivers dialog box appears, select the NotesSQL driver
and click OK. You do not need to modify any information in the Advanced
dialog box.

5. At the end of the installation process, the ODBC Data Source Administrator
dialog box appears so you can add Lotus Notes Data Sources. If you are
upgrading from a previous 2.x version of NotesSQL, note that you do
not have to make any changes to your Data Sources. All your previously
added Data Sources will work with this release.

6. For ease of access, move this documentation database to your Notes data
directory.

7. Reboot the system.

Adding a Lotus Notes Data Source
Before you can connect to a Domino database with NotesSQL, you must add
a data source for it. You can change or delete a data source at any time. You
can use as many data sources as you like with a particular driver, provided
no two data sources have the same name.

To add a Lotus Notes data source:

1. Start the ODBC Administrator.

2. Choose Add.

3. In the Add Data Source dialog box, select Lotus Notes from the Installed
ODBC Drivers list box.

476 Lotus Domino Release 5.0: A Developer’s Handbook

4. Choose OK. This brings up the NotesSQL Configuration dialog box.

Configuring a Lotus Notes Data Source
This section lists the parameters of a Lotus Notes Data Source with a
description of each. There are many parameters, but most have reasonable
defaults. We suggest you try using the defaults first. The three dialog box
fields that must be filled in are marked with an asterisk.

Fields that ask for numeric values check your input. If you specify a value
above the allowed maximum, the maximum value is substituted. If you
specify a value below the allowed minimum, the minimum value is
substituted. If you specify an invalid value, such as a letter, the default value
is substituted.

Data Source Name

Enter a name that identifies the data source in the Data Source Name text
box. For example, add the name “Employee” to identify the ODBC
connection to an employee database.

Description
Enter a description of the data source in the Description text box. For
example, add the description “Hire date, salary history, and current review
of all employees” to describe the contents of the employee database.

Chapter 14: Using Other Database Connectivity Tools 477

Server
Enter the name of the Notes server that contains the Domino database you
want to open in the Server text box. Leave the text box blank if the Domino
database is on a local disk.

Database
Enter the path and name of the .NSF file you want to open in the Database
text box. For example:

• C:\PERSONNEL\EMPLOYEE.NSF for a file on a local disk, or

• PERSONNEL\EMPLOYEE.NSF for a database on a Lotus Notes server.

Whether the data is local or on a server, the path is relative to the Notes
data directory on that machine. If the Notes data directory is
D:\NOTES\DATA\, PERSONNEL\EMPLOYEE.NSF points to
D:\NOTES\DATA\PERSONNEL\EMPLOYEE.NSF.

Max Length of Text Fields
This parameter specifies the maximum number of bytes NotesSQL allows in
a string. This limits the number of characters returned from a Notes text field
and the length of a string to be inserted into a Notes text field.

• The maximum value allowed is 15,360. The minimum value allowed is 2.

• The default value is 254. If the database will be used exclusively or
primarily with Lotus 1-2-3, we recommend a value of 511. This is the
maximum length of a string in a cell in Lotus 1-2-3.

Max Number of Tables
This parameter specifies the maximum number of tables in a single query.

• The maximum value allowed is 100. The minimum value allowed is 1.

• The default value is 20.

Max Number of Subqueries
This parameter specifies the maximum number of nested subqueries in a
SQL statement.

• The maximum value allowed is 100. The minimum value allowed is 1.

• The default value is 20.

Keep Temporary Indexes until SQLDisconnect
This option controls the saving of temporary indexes. Select the option to
save temporary indexes until SQLDisconnect. Leave the option unselected
to delete indexes at the end of each SELECT result.

• The option is unselected by default.

478 Lotus Domino Release 5.0: A Developer’s Handbook

Return Notes Implicit Fields
This option controls whether certain Notes fields are provided through
SQLStatistics and SQLSpecialColumns. Turn it off for maximum
interoperability. Turn it on for backward compatibility with NotesSQL 2.0
or earlier.

• The option is unselected by default.

Map Special Characters
This option controls whether certain characters are mapped to the
underscore character (_). For details, see the section “Mapping Notes
Names to SQL Names” later in this chapter.

• The option is selected by default.

Max Length of Rich Text Fields
This parameter is the same as Max Length of Text Fields, but for rich text
fields.

• The maximum value allowed is 15,360. The minimum value allowed is 2.

• The default value is 512. If the database will be used exclusively or
primarily with Lotus 1-2-3, we recommend a value of 511. This is the
maximum length of a string in a cell in Lotus 1-2-3.

Note Notes databases have long text fields called rich text fields. The Body
field of a Notes document is often a rich text field. If you want to retrieve all
the data in such a field, be sure that the maximum string length you specify
is large enough.

SQL Statement Length
This parameter specifies the maximum length of an SQL statement passed
to SQLPrepare or SQLExecDirect.

• The maximum value allowed is 32,767 (32K). The minimum value
allowed is 2.

• The default value is 4,096 (4K).

Thread Timeout (available on 32-bit Windows platforms only).
• All calls are serialized so that they proceed one after the other. This

parameter specifies the number of seconds one thread should wait for
another thread to finish.

• The maximum value allowed is 99,999. The minimum value allowed is 0.
A value of 0 means wait forever.

• The default value is 60.

Chapter 14: Using Other Database Connectivity Tools 479

Connecting to a Data Source
You can use NotesSQL with any application that supports ODBC drivers for
external data access. To connect to the Domino database, you select the data
source you defined using the Setup dialog box.

If your Notes user ID is password protected, Notes prompts for a password
when you first connect to a remote database using NotesSQL. This information
is not database specific and is retained for the length of the session, so you will
not need to enter it more than once if you connect to more than one database.

Notes never prompts for a user ID. Your user ID is part of your workstation
installation.

Connection Strings
The following keywords are supported for the SQLDriverConnect call:

The name of the Notes server where the database is located. If
the database is on the local workstation, leave the field blank.

Server

The name of the Domino database, with a path if necessary.Database

The name of the data source.DSN

DescriptionKeyword

For example, to connect to the Personnel data source in the directory
PERSONNEL on server HR_1, use the following connection string:

DSN=Personnel; Database=Personnel\employee.nsf; Server=HR_1

The following table describes how SQL components map to Notes components:

A SQL View maps to a Notes view that selects
documents from one form, in which all columns are
calculable from the form.

ViewView

A SQL Index maps to a Notes view in which all sorted
columns refer directly to fields in a single form, and
which selects documents from only that form.

ViewIndex

When creating a NotesSQL Table or View, it is best to
avoid the use of column names that are ODBC or SQL
reserved words or that contain characters other than
letters, numbers, or underscores.

Form
Field or
View Column

Column

SQL Tables map to either Notes forms or Notes views.
However, a Domino database contains only one real
table, referred to as the Universal Relation. This table
has the same name as the database.

Form or
View or
Universal
Relation

Table

CommentsNotes
Components

SQL
Components

480 Lotus Domino Release 5.0: A Developer’s Handbook

Note When a Domino database has both a form and a view with the same
name, NotesSQL cannot distinguish between them in SQL statements and
the view cannot be accessed.

Mapping Notes Names to SQL Names
Notes is more flexible about names than SQL. When naming a form or view,
Notes allows many special characters and sequences of characters that are
not part of the standard SQL syntax.

It is not uncommon to number views so that they will appear in a certain order
in the Create menu, for example:

1. Products

2. Suppliers

If developers want hierarchical view names, they use the backslash:

Products\By Name

Products\By Age

These common Notes naming conventions are not allowed by standard SQL
syntax, which does not allow the use of periods, spaces and forward slashes
in unquoted identifier names.

Mapping
Because of this difference in syntax support, NotesSQL optionally maps certain
characters to the underscore character (_). This mapping is configurable for
each data source. The default is to map the names. We recommend using the
default unless it causes a form or view to be inaccessible. This can happen
when two similar names (for example, “Employees$” and “Employees_”)
are mapped to the same name.

If you choose to map names, NotesSQL maps forms, views and their aliases,
form fields, and view columns. The characters mapped are:

~ ` ! @ # $ % ^ & * () - + = { } [] \ : ; " ' < > , . / ? and the space character.

The Universal Relation
NotesSQL recognizes Notes forms and views as tables. In addition to forms
and views, every Domino database contains a table that has the same name
as the database. This table is called the Universal Relation.

The Universal Relation contains all fields defined in all forms in the Domino
database. The Universal Relation is the only true table in a Domino database.
As a result, SQL tables created by NotesSQL behave more like SQL views
than traditional relational database tables.

Chapter 14: Using Other Database Connectivity Tools 481

For example, with NotesSQL, you can create a Notes form with the CREATE
TABLE statement. However, the DROP TABLE statement deletes the Notes
form but does not delete any data from the database. Using DROP TABLE
with NotesSQL is like deleting a SQL view, in that the data remains in the
database. You can view the data through other views that use the same field
names, or by referencing the Universal Relation table.

Continuing this example, if you create a new table with the same name as a
previously deleted table, and use some of the field names from the deleted
table, you could find data in the table before you insert any data. This is
because the table is actually a view of existing data in the Universal Relation
table. Documents (records) in the Domino database contain the name of
the form used to create them. NotesSQL uses the form name stored in the
document to identify the document when selecting from a form.

Using the Universal Relation
• You must have read/write access to a database to use its Universal

Relation. Without read/write access, you cannot perform any operation
(including SELECTs) on the Universal Relation.

• The same field name can be used in more than one form with different
data types in a Domino database. Therefore, you must use explicit field
names in a SELECT clause that references the Universal Relation. In
particular, you cannot use SELECT *. You can only perform text operations
on fields in the Universal Relation because the data type for all fields is
character.

• The Universal Relation can participate in a self-join but cannot participate
in any other kind of join.

• NotesSQL supports the SELECT statement on the Universal Relation.
NotesSQL does not support this on a read-only .NSF file.

• NotesSQL supports the CREATE VIEW statement on the Universal
Relation.

• NotesSQL does not support INSERT, DELETE, UPDATE, DROP TABLE,
or DROP VIEW statements on the Universal Relation.

• NotesSQL uses the type “UNIVERSAL” to differentiate the Universal
Relation in the result set of SQLTables.

Using SQL Tables from Derived Forms and Views
NotesSQL recognizes Notes forms and views as tables. In addition, the driver
recognizes the Universal Relation as a table. However, Notes forms and views
have very different properties that affect the performance of data access and
display with NotesSQL.

482 Lotus Domino Release 5.0: A Developer’s Handbook

Views in Notes databases list documents in a specific order. Avoid selecting
from a table based on a Notes view and then specifying a different sort order.
When you specify a different sort order on an existing view, Notes creates
a temporary table on your workstation and re-sorts the documents. Creating
a large temporary table and sorting the documents in that table will take a
long time.

Note Temporary table creation requires you to have read/write access to
the database. If you have read-only access, you cannot perform an operation
such as SELECT with ORDER BY or GROUP BY unless there is an existing
view you can use to support the operation.

To display information from a view in a different sort order, use a table based
on a Notes form and create an index on the form using the order you want,
or create a new view either in Notes or through ODBC.

Tables derived from Notes forms are not necessarily indexed for fast access.
When selecting data from a table based on a Notes form, NotesSQL looks for
a view that acts as an index on that table. If such a view is present, access to
the table will be fast. If no such view is present, access to the table may be
very slow. In particular, if the table is small in relation to the database, it
will take a long time for the driver to locate all the records in the table. This
is because Notes must search the entire database and check every record to
see if it belongs to the table.

Example: Using SQL Tables Derived From Notes Forms and Views
The Notes Personal Address Book (NAMES.NSF) is a good database to use
as an example to compare the use of forms or views in a database. The
Personal Address Book database includes:

• A form called Person

• A view called People with a sort key on LastName

The following statement is the most efficient way to find people in the
Personal Address Book sorted by LastName:

SELECT LastName
FROM People
ORDER BY LastName

People is a Notes view. This query is efficient because NotesSQL can use the
index already associated with the People view that lists LastName in the
right order. Now assume you want to list people sorted by their mailing
addresses. You could use the following statement:

SELECT LastName, Mail_Address
FROM People
ORDER BY Mail_Address

Chapter 14: Using Other Database Connectivity Tools 483

Since the People view is not sorted on Mail_Address, NotesSQL uses the
People index, generates a temporary table, and creates a temporary index
on Mail_Address. This results in slower performance.

A more efficient way to achieve the same result is to issue the following
statement:

SELECT LastName, Mail_Address
FROM Person
ORDER BY Mail_Address

Person is a Notes form. If there is no index on Mail_Address, NotesSQL
generates a temporary index on Mail_Address but does not need to generate
a temporary table. This statement is faster than the previous statement,
which used ORDER BY on a view-based table. This statement can be
executed even faster if the user creates an index in Notes or by using the
CREATE INDEX statement in NotesSQL.

Column, Index, Table, and View Names

Naming Rules
A column, index, or view name can be up to 32 characters long. A table name
can be up to 64 characters long.

Index, view, and table names can consist of letters, digits, underscores (_),
dollar signs ($), and spaces. If an index, view, or table name contains a space
or is the same as a SQL reserved word, it must be enclosed in double quotes.

Column names can consist of letters, digits, underscores (_), and dollar signs
($). Column names cannot contain spaces or conflict with a SQL reserved
word.

Creating Columns, Indexes, Tables, and Views
When creating an index or view, remember that index names and view names
must be unique within a database. Don’t use the name of an existing index
or view.

When creating a table, remember that table names must be unique within a
database. Don’t use the name of an existing table or view.

When creating or altering a table, remember that column names must be
unique within a table. Don’t use the name of another column in the table.

Name Visibility
If a Domino database contains both a view and a form with the same name,
NotesSQL will see the form but not the view.

484 Lotus Domino Release 5.0: A Developer’s Handbook

Using Notes Views as Indexes
NotesSQL will use an existing Notes view as an index if it meets the
following criteria:

• The view selection formula in the Notes view design is either SELECT
Form = “name” or SELECT @All.

• SELECT Form = “name” is faster than SELECT @All, unless all
documents in the database were created using the same form. Note that
views created with SELECT @All are not described as indexes through
SQLStatistics. They are used by NotesSQL to improve performance.

• Each sorted column in the view is defined as a simple reference to a field
in that form (no formulas).

• At least one column in the view is sorted.

An easy way to see this information at a glance in Notes is to select File -
Database - Design Synopsis. In the dialog box, choose Views, then click OK.
Notes generates a detailed synopsis document that includes all the above
information and more.

Unique Indexes
In Notes there is a view property labeled “Unique keys in index (for ODBC
access).” When this setting is checked, NotesSQL describes the sorted columns
of the view as the keys of a unique index. This happens through the ODBC
call SQLStatistics. Having these indexes allows several third-party applications
to issue updates against NotesSQL.

Use some care with this feature. Checking the box doesn’t make the view a
unique index in the relational database sense. Specifically, it doesn’t prevent
duplicate records. It only puts the first document with a particular sorted
value into the view. Therefore, if you are using this feature, updates may
affect more than one record and ORDER BYs may generate small result sets.

Here are some guidelines to follow to avoid these problems:

• Only use the check box for one view that selects from each form that will
be updated.

• Choose a view with sorted columns that are each one field (not a
formula or expression).

• Choose a view with sorted columns that together uniquely identify a
record.

Chapter 14: Using Other Database Connectivity Tools 485

View Column Definitions
If a column in a view does not refer directly to a field, NotesSQL creates a
name for that column in the result set. The name is the “$” character
followed by a number (for example, “$2”).

If a view column definition or a Computed for Display field in a form contains
one of the @functions listed below, NotesSQL returns no results for that
column. These columns are not reported by SQLColumns. These columns
display data when viewed from Notes, but this data is not available through
a SQL query.

• @All

• @DeleteDocument

• @DeleteFields

• @DocChildren

• @DocLevel

• @DocNumber

• @DocParentNumber

• @DocSiblings

• @Error

• @IsCategory

• @IsExpandable

• @Unavailable

Note Expressions passed in SQL statements must be either valid SQL
expressions or valid Notes expressions. Otherwise, the results are
unpredictable.

Data Types

ODBC SQL to Notes data type mapping:

continued

Number, Fixed formatSQL_NUMERIC

Number, Fixed formatSQL_DECIMAL

TextSQL_LONGVARCHAR

TextSQL_VARCHAR

TextSQL_CHAR

Lotus Notes Data TypeODBC SQL Data Type

486 Lotus Domino Release 5.0: A Developer’s Handbook

TimeSQL_TIMESTAMP

TimeSQL_TIME

TimeSQL_DATE

Number, General formatSQL_DOUBLE

Number, General formatSQL_FLOAT

Number, General formatSQL_REAL

Number, General formatSQL_INTEGER

Number, Fixed formatSQL_SMALLINT

Lotus Notes Data TypeODBC SQL Data Type

In addition to the SQL data types, Notes supports two additional data types:

1. Multi-Valued Fields (List Fields)
NotesSQL supports multiple values in fields. NotesSQL contains information
about which fields can have multiple values and the underlying data type
for these values. NotesSQL does not support multi-valued (list) fields in
DDL statements (CREATE TABLE, ALTER TABLE, CREATE INDEX,
CREATE VIEW).

Use the following notation in DML statements (SELECT, INSERT, UPDATE
searched, UPDATE positioned, DELETE searched, DELETE positioned) to
specify a list of values:

'string;string;string'

See below for more information about the correct separator character to use.

Text Fields
NotesSQL returns all the data in multi-valued fields composed of text as a
single string. Data items are separated by the display separator character
(the character defined in Notes as the one to use to separate multiple values
when displaying them). For example:

'a;b;c'

Note An extra semicolon can appear in the result if the data was entered in
Notes, any character other than a semicolon was used as the display separator
character, and the list contains an item that includes a semicolon.

NotesSQL accepts a list of strings for insertion in a multi-valued field of type
Text. You must separate the strings with the display separator character defined
for that field. If a comma is the display separator character for a field, you must
specify a string, for example:

'a,b,c'

Chapter 14: Using Other Database Connectivity Tools 487

This value creates a list in the Notes document if the field allows multiple
values. If the field does not allow multiple values, the value appears in Notes
as a single string. Data retrieved through NotesSQL produces the same result
in either case.

Numeric and Date Fields
NotesSQL returns only the first value in the list when the multi-valued fields
are numeric or date fields.

Currently, NotesSQL accepts only a single numeric or date value for insertion
in a multi-valued field of type Numeric or Date.

2. Rich Text Fields
NotesSQL returns only the text part(s) of a Notes rich text field. NotesSQL
cannot create a rich text field.

The driver supports only the LIKE operator in a WHERE clause for testing
rich text fields. The driver does not support any other tests on rich text fields.

Additional restrictions on rich text fields:

• If a rich text field in Notes has embedded bitmaps or large attachments,
text following the bitmap may not be returned by NotesSQL.

• If a rich text field contains only blank lines, NotesSQL will not return
data from that field.

• String constants in a LIKE statement are restricted to a maximum of 254
characters, including any embedded carriage returns.

• You cannot insert a string longer than 15,360 bytes into a rich text field.

Note SQLGetTypeInfo returns ODBC SQL data types. All conversions in
Appendix D of the Microsoft ODBC SDK Programmer’s Reference are
supported for the ODBC SQL data types listed above.

Note SQL_TIMESTAMP fields do not support fractions of a second.

Note SQL_VARCHAR or SQL_LONGVARCHAR data types cannot be
used to create rich text fields. They create text fields.

Notes to SQL Data Type Mapping:

continued

SQL_FLOATNumber, Scientific format

Number, General format

SQL_DECIMALNumber, Percent format

Number, Fixed format

ODBC SQL Data TypeLotus Notes Data Type

488 Lotus Domino Release 5.0: A Developer’s Handbook

Not supportedSection

Text portion only, as SQL_LONGVARCHARRich text field

SQL_VARCHARMulti-value list

SQL_VARCHARKeyword

SQL_VARCHARText

Depending on format, this can be SQL_TIME,
SQL_DATE, or SQL_TIMESTAMP

Time

ODBC SQL Data TypeLotus Notes Data Type

Note Numeric values greater than 10 to the 99th power are not supported.
Some products that use ODBC drivers have limitations on the exponent and
precision size of real numbers. Please check the limits of the product you are
using for additional limit information.

Note NotesSQL does not check the keyword list for Keyword fields. It is
possible to insert values not on the keyword list when the “allow values not
in list” box is not checked.

Note NotesSQL does not support Notes Section security. Users of NotesSQL
can read and modify fields anywhere on a form.

Note You cannot insert a string longer than 15,360 bytes into a rich text field.

Summary of Supported ODBC SQL Grammar
The following ODBC SQL grammar is supported. For full details on how to
use each statement, refer to the NotesSQL Reference database.

Supported Statements
• ALTER TABLE

• CREATE INDEX

• CREATE TABLE

• CREATE VIEW

• DELETE Searched

• DELETE Positioned

• DROP INDEX

• DROP TABLE

• DROP VIEW

• INSERT

Chapter 14: Using Other Database Connectivity Tools 489

• SELECT

• FOR UPDATE

• FROM

• GROUP BY

• HAVING

• ORDER BY

• UNION

• UPDATE Searched

• UPDATE Positioned

• WHERE

Supported Expressions, Functions, and Operators
Numeric Operators
NotesSQL supports the following numeric operators in expressions:

Division/

Multiplication*

Subtraction-

Addition+

MeaningOperator

Predicate Operators

continued

Use for matching a pattern. Wildcard characters in LIKE predicate:
Use an underscore (_) to represent a single character.
Use a percent symbol (%) to represent any number of characters.
Use a backslash (\) as the escape character.

LIKE

Specifies a member of a set of specified values or a member of a
subquery.

IN

Specifies a range of values between a lower and upper boundary.BETWEEN

Not Equal<>

Equal=

Greater Than or Equal>=

Less Than or Equal<=

Greater Than>

Less Than<

MeaningOperator

490 Lotus Domino Release 5.0: A Developer’s Handbook

“True” if a subquery returned at least one record.EXISTS

Use to compare a value to each value returned by a subquery.
Can be prefaced by =, <>, >, >=, <, or <=.

ALL

SOME is an alternate keyword for ANY.SOME

Use to compare a value to each value returned by a subquery.
Can be prefaced by =, <>, >, >=, <, <=, or =.
=ANY is equivalent to IN.
<>ANY is equivalent to NOT IN.

ANY

Use the NOT operator with another operator to specify a search
condition that is false. For example: NOT IN, NOT LIKE, or NOT
BETWEEN.

NOT

MeaningOperator

Column Functions
Column functions can be part of a SELECT clause. A column function takes
an entire column of data as its argument and produces a single data item
that summarizes the column. For example, the AVG column function takes
a column of data and computes its average.

The argument to a column function can be a field name or an expression.
NotesSQL supports the following Column functions:

Returns the total of all values in a numeric field expression. For
example, SUM(SALES) returns the sum of all SALES field values.

SUM

Returns the lowest value in any field expression. For example,
MIN(SALES) returns the lowest SALES field value.

MIN

Returns the highest value in any field expression. For example,
MAX(SALES) returns the highest SALES field value.

MAX

Returns the number of values in any field expression. COUNT

Returns the average of the values in a numeric field or expression.
For example, AVG(SALES) returns the average of all values in the
“SALES” column.

AVG

DescriptionFunction

Chapter 14: Using Other Database Connectivity Tools 491

Exceptions to ODBC SQL Grammar
NotesSQL supports most SQL statements and clauses in the ODBC
Minimum and Core grammar. The following table describes exceptions:

Not supported. All access control is handled implicitly by
Notes.

GRANT and
REVOKE

Dependencies are only recognized if they were originally
created using the driver. DROP TABLE CASCADE will only
remove dependent views created using the driver. DROP
TABLE RESTRICT will only prevent the removal of a table
if a dependent view was created using the driver.

RESTRICT and
CASCADE

Parameters are supported in INSERT, DELETE, and SELECT
SQL statements. They cannot be used with CREATE TABLE,
CREATE VIEW, and other statements that manipulate the
structure of tables and views (DDL). Arrays of parameters
are not supported.

PARAMETER
RESTRICTIONS

The following keywords are not supported:
NULL
NOT NULL
UNIQUE
PRIMARY KEY
REFERENCES
No table constraint definition

CREATE TABLE

The UNIQUE keyword is not supportedCREATE INDEX

The following keywords are not supported:
NULL
NOT NULL

ALTER TABLE

NotesSQL supports ordering by expressions that aren’t in the
project list. This is not standard SQL but many applications
use it.

ORDER BY clause

There is no explicit NULL in Notes. NotesSQL uses NULLs to
provide access to the Notes function @IsAvailable. See
“NULLs” below for details.

NULLs

ExceptionGrammar

NULLS
NotesSQL uses NULLs to provide access to the Notes function @IsAvailable.
For example, suppose you are comparing a field to NULL, as in:

SELECT * FROM Employee WHERE Name IS NULL

NotesSQL checks @IsAvailable(“Name”). If @IsAvailable(“Name”) is TRUE,
the WHERE clause is FALSE. Otherwise, the WHERE clause is TRUE.

492 Lotus Domino Release 5.0: A Developer’s Handbook

Continuing the parallel, updating or inserting NULLs through NotesSQL
removes fields from documents. So, for example, the following will create a
document with no Name field:

INSERT INTO Employee (EmpNo, Name) VALUES (10, NULL)

Likewise, the following will remove the Name field from a document:

UPDATE Employee SET Name=NULL WHERE EmpNo=10

Known Limitations or Problems With NotesSQL

• A text field length of more than 254 is not recommended. It is available
so that you can read long Notes text fields. Notes text fields are mapped
to the ODBC data type VARCHAR. The ODBC specification for the
maximum string length of a VARCHAR field is 254. Some applications
won’t work with longer fields. You may experience problems even if the
data is shorter than 254 characters.

• Scalar functions are supported if there is underlying Notes support.
Consequently, these scalar functions are not supported:

• String: ASCII, INSERT, LOCATE

• Numeric: TRUNCATE

• NotesSQL was developed to the ODBC 2.0 specification. ODBC 3.0
Driver Manager vendors have tried to be backward-compatible with
ODBC 2.0 drivers, but several features are not available.

• Several APIs were added in 3.0. None of these is supported.

• The results in “Driver Capabilities: SQLGetInfo Return Values” were
generated with ODBC 2.0.

• There may be problems using categorized views. They don’t map to the
relational data model.

• You can’t use a form or view with a double quote (“) in the name.

• View selection formulas marked as “easy” (as opposed to “formula”) in
the radio button on the view design may be hiding some detail. Look in
the design synopsis to see the full view selection formula.

• NotesSQL does not support multi-threading on OS/2, 16-bit Windows,
or the Macintosh due to limitations in the underlying thread support.

Chapter 14: Using Other Database Connectivity Tools 493

Example: Accessing Notes From Visual Basic
Visual Basic has a number of ways of accessing Lotus Notes using the ODBC
feature:

• Remote Data Control (RDC)

This is a visual control to deal with remote data access. Basically, no
programming is needed to access Notes. This feature can provide read
and write access to a database, but it is often used only to retrieve
database data.

• Remote Data Object

Some methods and properties are available in the Remote Data Object
to access an ODBC database.

• ODBC API Call

Environment handles, Connection handles and statement handles are
retrieved in both the Remote Data Control and the Remote Data Object.
They can be combined with each other.

Program Structure
The following sections provide some detailed information on how our
sample application accesses a Domino database from Visual Basic.

Creating a Data Source List
When the form module of our example is loaded, a data source list is created
by the ListDataSources subroutine and listed in a listbox as follows:

'** Form_Load is executed, when a Form is loaded.
Private Sub Form_Load()
'** To create a data source list using ODBC API
Call ListDataSources
End Sub
'** ListDataSources can make a data source list
'** and display it in a listbox
Sub ListDataSources()
Dim ret As Integer
Dim dataSource As String * 32
Dim dsDesc As String * 2048
Dim dsLen As Integer, dsDescLen As Integer
Dim henv As Long, hdbc As Long, hstmt As Long
'** To get an Environment Handle
ret = SQLAllocEnv(henv)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get Data Source List
'** Fetch the First Record

494 Lotus Domino Release 5.0: A Developer’s Handbook

ret = SQLDataSources(henv, SQL_FETCH_FIRST, dataSource, 31,
dsLen, dsDesc, 2047, dsDescLen)
Do
 If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
 ElseIf ret = SQL_NO_DATA_FOUND Then
'** When the end of records, Exit Do-sLoop
 Exit Do
 End If
 list1.AddItem dataSource
'** Fetch a Next Record
 ret = SQLDataSources(henv, SQL_FETCH_NEXT, dataSource, 31,
dsLen, dsDesc, 2047, dsDescLen)
Loop
End Sub

Creating a Table List
To create a table list according to the data source name you specified in the
data source list, click the Get Table List button. It is easy to get information
about table names in a database using one of the RDO properties (rdoTables)
as follows.

'** This subroutine is executed, when a button is clicked
Private Sub Command2_Click(
Dim tbNum As Integer
Dim tables As Variant
MSRDC1.SQL = ""
MSRDC1.DataSourceName = text2.Text
'** To connect to a data source
MSRDC1.Refresh
List2.Clear
'** To get table names in a data source and set them to a
listbox
For Each table In MSRDC1.Connection.rdoTables
 List2.AddItem tables.Name
Next
End Sub

Issuing a SQL Statement and Getting a Result Set
Before a SQL statement is executed, you need to create the following Remote
Data Control anywhere in your Visual Basic form. It should be invisible
using a property. To execute a SQL statement with this control, specify a
data source name in the DataSourceName property and a SQL statement
in the SQL property.

Chapter 14: Using Other Database Connectivity Tools 495

'** This subroutine is executed, when a button is clicked
Private Sub Command1_Click()
'** To Ignore Run Time Error
On Error Resume Next
MSRDC1.DataSourceName = text2.Text
MSRDC1.SQL = Text1.Text
'** To issue a query
MSRDC1.Refresh
'** Cancel To Ignore Run Time Error
On Error GoTo 0
End Sub

Note Our sample program does not provide for error handling, as we just
intended to show some behaviors of NotesSQL. When you input an incorrect
SQL statement, nothing will happen. If you want to create a fully developed
error handling routine, remove the On Error statements in the above program.

How It Works
This is how it works:

1. After the program is launched, the following data source list is
displayed. The data source list is only created at launch time.

2. Choose a data source from the list and click the Get Table List button.
This displays a table list on the right-hand side of the dialog box. The
data source name which you chose is also displayed in the Selected Data

496 Lotus Domino Release 5.0: A Developer’s Handbook

Source field. The table list is only used to refer to table names in a
database and has no effect on the following SQL query.

3. To get a SQL result set, specify a SQL statement in the SQL text box and
click the Execute SQL button. The following figure shows a result set of a
query to an Address Book in Lotus Notes using the NotesSQL ODBC driver:

Chapter 14: Using Other Database Connectivity Tools 497

Example: Using NotesSQL With Microsoft Active Server Pages (ASP)
In the following section we will set up Microsoft Internet Information Server
to access Domino databases using the NotesSQL driver and FrontPage 98.

Note Before you start you must make sure that your IIS server is configured
to run ASP pages and has the Microsoft FrontPage extensions installed on the
server. You must also have at least the Lotus Notes client software installed.

1. In Domino Designer create a new view in the Address book and name it
DominoASP.

2. Create three columns in the view containing the fields LastName,
FirstName and OfficePhoneNumber.

3. Make the LastName column sorted.

4. Name the columns; Last, First, Tel.

5. Set the selection formula to
SELECT TYPE = "Person"

6. Your view should now look like this:

7. Save the view.

8. Open the Windows Control Panel and double click the ODBC
Administrator icon.

9. Select the System DSN tab and click Add.

10. Select the Lotus Notes 2.0 (32-bit) ODBC Driver (*.nsf) from the list of
available drivers and click Finish.

498 Lotus Domino Release 5.0: A Developer’s Handbook

11. Complete the setup panel as follows: Data Source Name = NOTESNAB,
Server=your server name, Database=names.nsf. The dialog box should
look like the screen below.

12. Click OK to close the setup dialog box and OK again to close the ODBC
Administrator dialog box.

13. Start FrontPage 98 and create and open a new page in the FrontPage
Editor.

14. Select Insert Database - Database - Region Wizard.… From the menu.

15. On the first page of the wizard, type NOTESNAB as the ODBC data source
and click Next.

Chapter 14: Using Other Database Connectivity Tools 499

16. In the next dialog box enter the following SQL statement:
SELECT LastName, FirstName, OfficePhoneNumber from
ASPExample

17. Click the Next button.

18. In the next dialog box enter the three column names from the view by
clicking Add and typing Last, First, Tel respectively.

19. Make sure that the Show the Query in a table check box is ticked and
click the Finish button.

20. You will receive a warning message telling you that you must save this
file as an ASP file rather than an HTML file. Click OK to remove the
message.

500 Lotus Domino Release 5.0: A Developer’s Handbook

21. Your FrontPage screen will now look like this.

22. Select File - Save As and type Default.ASP as the filename. Click OK to
save the file.

23. Select File - Preview in Browser from the menu. Select your preferred
browser and click OK. You will see a screen like the one below.

Chapter 14: Using Other Database Connectivity Tools 501

Domino Driver for JDBC
The Lotus Domino Driver for JDBC is a Type 2 JDBC driver that allows you
to access Domino databases from Java.

What is JDBC?
JDBC is an object interface that allows Java applications and applets to
retrieve and manipulate data in database management systems using SQL.
The interface allows a single application to connect to many different types of
databases through a standard protocol. JDBC handles details for such tasks as
connecting to a database, fetching query results, committing or rolling back
transactions, and converting SQL types to and from Java program variables.
JDBC is implemented as a driver manager with multiple drivers. Each driver
links the application to a specific type of database.

JDBC was first introduced in the Java Development Kit (JDK) 1.1 from Sun
Microsystems. The JDBC classes and interfaces are part of the java.sql
package. The major components of JDBC are the JDBC driver manager and
the underlying drivers. JDBC uses the driver manager to handle finding and
loading a driver. A JDBC data source consists of the data the user application
wants to access and its associated parameters. Each JDBC driver processes
JDBC method invocations, sends SQL statements to a specific data source,
and returns results to the application.

JDBC drivers generally fit into one of four types:

1. The JDBC-ODBC bridge provides JDBC access via ODBC drivers.
NotesSQL (the Domino/Notes ODBC driver) may be used with the
JDBC-ODBC bridge.

2. A native-API, partly-Java driver converts JDBC calls into calls on the
client API for the DBMS in question. This style of driver requires that
some binary code be loaded on the client machine. Domino Driver for
JDBC is a Type 2 driver.

3. A net-protocol, all-Java driver translates JDBC calls into a
DBMS-independent net protocol which is then translated to a DBMS
protocol by a server. This net server middleware is able to connect its
all-Java clients to many different databases. This is the most flexible Java
alternative.

4. A native-protocol, all-Java driver converts JDBC calls into the network
protocol used by DBMSs directly. This allows a direct call from the client
machine to the DBMS server and is a practical solution for Internet
access.

Note From a functionality and SQL syntax view point, the JDBC driver for
Domino is the same as NotesSQL.

502 Lotus Domino Release 5.0: A Developer’s Handbook

Domino Driver for JDBC Data Types

Domino Driver for JDBC Types Mapped to Java Object Types
This table shows the mapping from Domino Driver for JDBC types to Java
object types that is used by the getObject/setObject methods of Domino
Driver for JDBC.

The JDBC types BIT, TINYINT, BIGINT, BINARY, VARBINARY and
LONGVARBINARY are not supported by Domino Driver for JDBC.

java.sql.TimestampTIMESTAMP

java.sql.TimeTIME

java.sql.DateDATE

DoubleFLOAT

FloatFLOAT

FloatREAL

IntegerINTEGER

IntegerSMALLINT

java.math.BigDecimalDECIMAL

java.math.BigDecimalNUMERIC

StringLONGVARCHAR

StringVARCHAR

StringCHAR

Java Object TypeLotus Domino Driver for JDBC Type

Java Object Types Mapped to Domino Driver for JDBC Types
The Java Object Types Boolean, Long, and byte[] are not supported by
Domino Driver for JDBC.

String will always map to VARCHAR.

TIMESTAMPjava.sql.Timestamp

TIMEjava.sql.Time

DATEjava.sql.Date

DOUBLEDouble

REALFloat

INTEGERInteger

NUMERICjava.math.BigDecimal

VARCHAR or LONGVARCHARString

Lotus Domino Driver for JDBC TypesJava Object Type

Chapter 14: Using Other Database Connectivity Tools 503

Conversions by setObject between Java Object Types and Target
Domino Driver for JDBC Types
An “X” means that the given Java object type may be converted to the given
Domino Driver for JDBC type.

Note Some conversions may fail at runtime if the value presented is invalid.

Use of getXXX Methods to Retrieve Domino Driver for JDBC Datatypes
An “O” means that the method can retrieve the Domino Driver for JDBC
type. An “X” means that the method is recommended for that Domino
Driver for JDBC type.

The methods getByte, getLong, getBoolean, getBytes, and getBinaryStream
are not supported.

504 Lotus Domino Release 5.0: A Developer’s Handbook

Creating a Connection
To create a connection in your Java application to a Domino database using
the Domino JDBC driver, you need to perform a number of steps. The
following example describes how to connect to your Local Address Book,
Names.nsf, and print a list of all the people stored within it.

Note We used IBM VisualAge for Java 1.1 to create this example.

1. Before you can use JDBC within Java, you must import the java.sql package
which is included with Java 1.1.
import java.sql.*;

2. You then need to import the Domino JDBC driver package so you can
access the Domino specific functions.
import lotus.jdbc.domino.*;

Chapter 14: Using Other Database Connectivity Tools 505

3. Next you create an instance of the driver and register it with the JDBC
driver manager using the Class.forName function. If the function produces
a ClassNotFoundException error you need to catch it and act accordingly.
try {
 Class.forName("lotus.jdbc.domino.DominoDriver");}
catch (ClassNotFoundException e) {
 System.out.println("ClassNotFoundException: " +
 e.getMessage()); }

4. You now need to specify where the database that the JDBC driver is
to connect to is located. This is done using the JBDC URL. A JDBC URL
for the Domino driver is in the format:
jdbc:domino/<filename>[/<server>][;<keyword>=<attribute>[;
<keyword>=<attribute>]...]

where jdbc:domino is the protocol and subprotocol, filename is the fully
qualified path and filename to the Domino database, server is the name
of the server where the database resides, and keyword is one or more
optional keywords. For a list of all the available keywords and
corresponding attributes, see the JDBC driver documentation.

In our example we are going to connect to the names.nsf database on
the Red5 server. The URL would look like this:
connStr = "jdbc:domino/names.nsf/red5.lotus.com";

If we needed to connect to the database JdbcDemo.nsf on the local machine
in a subdirectory from the Domino data directory of Samples, the URL
would look like this:
"jdbc:domino/samples\\jdbcdemo.nsf";

Note We use the reversed double backslash characters to designate the
file path, and no server name.

5. You can now use the URL to establish a connection to the database using
the getConnection method of the JDBC driver manager. The second and
third parameters of the getConnection method are for userid and password,
which are not used by the Domino JDBC driver, since they are retrieved
from the current Notes userid file. In this next line of code you connect
to the database and set a connection object, con:
con = DriverManager.getConnection(connStr,"","");

6. Next you need to tell the connection what you would like to do with the
database. This is done with SQL commands. In this example you will
retrieve the firstname and lastname fields from the person document
so the query looks like this:
String sql = "SELECT FirstName, LastName FROM Person";

506 Lotus Domino Release 5.0: A Developer’s Handbook

7. Having created an SQL query, you need to create a JDBC statement object
to use with it. A statement object sends SQL statements to a database.
stmt = con.createStatement();

8. You can now execute the SQL query on the database using the
executeQuery method of the JDBC statement object you created in the
previous step. There are two methods to use when executing SQL
commands on a database:

• execute Query, which returns a result set, and

• executeUpdate, which is used with INSERT, UPDATE and DELETE
commands and returns the number of rows in the database that were
affected.

In this example, you are simply querying the database so you will use
the executeQuery method:
ResultSet rs = stmt.executeQuery(sql);

A result set gives you access to the data retrieved from the table in the
database. The table rows are retrieved in sequence and the result set
object maintains a cursor pointing to its current row of data. Initially the
cursor is positioned before the first row. The “next” method moves the
cursor to the next row.

9. To access more detailed information about the information within the result
set, you can create a ResultSetMetaData object. The ResultSetMetaData
object contains information such as column names, column types, and
number of columns. To access these properties, use the following code:
ResultSetMetaData rsmd = rs.getMetaData();

10. Once you have access to information within the result set, such as
column names, you can use these to format the output of the data by
adding column headings. The following code loops through each of the
column headings and prints them to the console window. It also adds an
additional line containing dashes to separate the headings from the data
that will follow:
// Find number of columns in the result set
int colCount = rsmd.getColumnCount();
System.out.println(colCount);

// Array to hold max display size per column
int[] len = new int[colCount+1];

// Print column Labels as header
for (int i=1; i<= colCount; i++)
{

// Get column label.
String label = rsmd.getColumnLabel(i);
// Store the maximum of display size or label length

Chapter 14: Using Other Database Connectivity Tools 507

if (label.length() > 10)
len[i] = label.length();

else
len[i] = 10;

// Print label
System.out.print(label);
// Pad with blanks
fill(" ",len[i]-label.length());
// Column seperator
System.out.print(" ");

}
// New line
System.out.println();
for (int i=1; i<= colCount; i++)\
{

fill("-", len[i]);
System.out.print(" ");

}
// New line
System.out.println();

The two functions used in the above code, fill() and printCol() are shown
below:

static void fill(String s, int times)
{

if (times <= 0)
return;

 for (int i=0; i<times; i++)
 {
 System.out.print(s);
 }
}
static void printCol(int len, String s)
{

System.out.print(s);
fill(" ",len-s.length());
System.out.print(" ");

}

11. You can now output the information within the result set to the console.
You will use the getString method of the result set object to retrieve the
columns and PrintCol to output them.
while (rs.next())
{

// Get all columns as String.
String Fname = rs.getString(1);
printCol(len[1], Fname);|
String Lname = rs.getString(2);

508 Lotus Domino Release 5.0: A Developer’s Handbook

printCol(len[2], Lname);
System.out.println();

}

12. Finally, you close both the statement object and the connection object
using the close methods of each.
stmt.close();
con.close();

13. The following screen shot shows the result of running the code:

For your convenience, the entire Java code is included below:

import java.util.*;
import java.sql.*;
import lotus.jdbc.domino.*;

public class Domino_Sample1
{

public static void main(String[] args)
{

Connection con;
Statement stmt;
ResultSet rs;
ResultSetMetaData rsmd = null;
String sql =
"SELECT FirstName, LastName FROM Person";
String connStr =
"jdbc:domino/names.nsf/red5.lotus.com";

try {
try {

Class.forName("lotus.jdbc.domino.DominoDriver"); }
catch (ClassNotFoundException e) {

System.out.println("ClassNotFoundExecption: " +

Chapter 14: Using Other Database Connectivity Tools 509

e.getMessage());
}

// GET CONNECTION
System.out.println();
System.out.println("Connecting to URL " +
connStr);

con =
DriverManager.getConnection(connStr,"","");
SQLWarning warning = con.getWarnings();

// Create Statement
stmt = con.createStatement();

// Execute statement
rs = stmt.executeQuery(sql);
System.out.println("Executing... " + sql);
System.out.println();

// Get Result set metadata
rsmd = rs.getMetaData();

// Find number of columns in the result set
int colCount = rsmd.getColumnCount();

// Array to hold max display size per column
int[] len = new int[colCount+1];

// Print column Labels as header
for (int i=1; i<= colCount; i++)
{

// Get column label.
String label = rsmd.getColumnLabel(i);
// Store the maximum of display size or
label length
if (label.length() > 10)

len[i] = label.length();
else

len[i] = 10;
// Print label
System.out.print(label);
// Pad with blanks
fill(" ",len[i]-label.length());
// Column seperator
System.out.print(" ");

}
// New line
System.out.println();

for (int i=1; i<= colCount; i++)
{

fill("-", len[i]);
System.out.print(" ");

}
// New line
System.out.println();
// Fetch all rows in the result set
while (rs.next())
{

// Get all columns as String.

510 Lotus Domino Release 5.0: A Developer’s Handbook

String Fname = rs.getString(1);
printCol(len[1], Fname);

String Lname = rs.getString(2);
printCol(len[2], Lname);

System.out.println();
}

// Close the statement
stmt.close();

// Close the connection
con.close();

} catch (Exception e) {
System.out.println(e.getMessage());

}
 }

// Print a column and pad it with blanks + separator
static void printCol(int len, String s)
{

System.out.print(s);
fill(" ",len-s.length());
System.out.print(" ");

}
// Print a string N times
static void fill(String s, int times)
{

if (times <= 0)
return;

 for (int i=0; i<times; i++)
 {
 System.out.print(s);
 }
}

}

Using IBM VisualAge for Java Version 1.0
The VisualAge for Java Data Access Builder lets you rapidly develop data
access programs using the JDBC API. In much the same way that the ODBC
standard defines an API that enables applications to access any
ODBC-compliant database, the JDBC standard defines a common base on
which other data access tools can be built. If you want to leverage existing
ODBC databases using Java, Sun’s JDBC-ODBC bridge driver translates
JDBC calls into ODBC calls.

The Data Access tool (DAX) of VAJava generates JDBC code using a wizard
which interfaces only with ODBC drivers. The end result is an applet that loads
the JDBC-ODBC bridge and connects to a database using the JDBC-ODBC URL
syntax specifying the ODBC data source.

Chapter 14: Using Other Database Connectivity Tools 511

Currently, the only way to load other JDBC drivers is to modify the property
values of the Driver and the URL before you generate the applet code. To use
VAJava and Domino Driver for JDBC, you must:

• Have the NotesSQL ODBC driver.

• Before generating the JDBC code, modify the property values of the driver
and the URL.

For more information, see the VAJava documentation.

Using IBM WebSphere Application Server
IBM WebSphere Application Server provides a runtime environment for
Java servlets with connectors to common database formats. It runs on HTTP
servers including Netscape Enterprise Server, Netscape FastTrack Server,
Microsoft Internet Information Server, Apache Server, and the Lotus Domino
Go Webserver.

Servlets enable request/response services on an HTTP server. When a client
sends a request to a Web server, the servlet can construct the response that
the server sends back to the client. A servlet can be loaded automatically
when the Web server is started, or the first time a client requests its services.
After loading, a servlet keeps running, waiting for more client requests.

To Configure and Run Domino Driver for JDBC Using IBM WebSphere
1. Set up Domino Driver for JDBC support:

• Log in to IBM WebSphere Application Server 1.0 ServletExpress
Manager.

• Add the full path of Domino Driver for JDBC (for example,
c:\notes\jdbcsql\lib\JdbcDomino.jar) to the Java ClassPath edit field
on the “Basic” tab (Manage - Setup - Basic).

2. Write your own servlet to load and run Domino Driver for JDBC. For
example:
import lotus.jdbc.domino.*;
...
public class Sample1 extends HttpServlet
{
 public void doGet (HttpServletRequest req,
HttpServletResponse res)
 throws ServletException, IOException\
 {
 Connection con;
 PrintWriter out;
 String connStr = "jdbc:domino/JdbcDemo.nsf";
 res.setContentType("text/html");
 out = res.getWriter();

512 Lotus Domino Release 5.0: A Developer’s Handbook

 out.println("<html>");
 Out.println("<head><title>Sample1
 Servlet</title></head>");
 out.println("<body>");
 try {
 try {

Class.forName("lotus.jdbc.domino.DominoDriver"); }
 catch (ClassNotFoundException e) {
 out.println("ClassNotFoundExecption: " +
 e.getMessage());

throw new Exception ("Servlet Failed.");
 }
 // GET CONNECTION
 out.print("<p>");
 out.print("Connecting to URL " + connStr);
 con = DriverManager.getConnection(connStr,"","");
 /*
 * We now have a valid connection to our Domino
 * database and can query it as usual.
 *
 Put your code here !!
 *
 */
 // Close the connection
 con.close();
 out.println("</body></html>");
 } catch (Exception e) {
 out.println(e.getMessage());
 out.println("</body></html>");
 }
 }
}

LotusScript Data Objects and ODBC
This section describes the LS:DO (LotusScript:Data Object) and @DBCommand,
@DBLookup, @DBColumn functions that can be used to access data resources
from a Notes application.

The above features are based on Open Database Connectivity (ODBC) technology.

When you are developing your Notes application, you need to decide what
your data access needs are and which products best meet those needs. Each
product has different functionality as well as performance and programmability.
When you have completed this section, you should know when to use these
methods, and how to use them.

Chapter 14: Using Other Database Connectivity Tools 513

Data Resource Access
When you develop a Notes application, you often need to implement data
integration between Notes and other data resources such as RDBMS,
spreadsheet data, and ASCII delimited text files. In enterprise Notes
application development, this becomes even more important as you
integrate legacy database resources in your design.

Database Access Facilities
The following tools enable Notes applications to connect to data resources
through ODBC or native database access:

• LS:DO (LotusScript:Data Object)

This is a LotusScript Extension (LSX) which provides additional
LotusScript classes for accessing other data resources via ODBC.

• @DBCommand, @DBLookup, @DBColumn using ODBC

These are @functions for ODBC data access. The functions @DBLookup
and @DBColumn are frequently used to access Notes databases as well
as ODBC-compliant databases.

The choice of tool to use in a particular situation depends on the functionality
and performance of the particular tool. The following table summarizes the
characteristic differences between the tools covered in this section:

XX64KB Data Limit

XXRead Only

XHas a Class

*1*1XAvailable in LotusScript

XXXBased on ODBC

@DBCommand@DBLookup
@DBColumn

LS:DOCharacteristics

*1 Technically, LotusScript can perform @functions under the Evaluate function.

Furthermore, we must consider some ease-of-use versus programming
functionality and flexibility. For example, @functions are useful to retrieve
small amounts of data on the fly without complex sequences, but they are
limited in the number of ways to access data.

LS:DO can be used in more complex situations with much more flexibility
from a programming perspective, for example, result-set handling to read
and update records queried by SQL. LS:DO is also easy to use if you are

514 Lotus Domino Release 5.0: A Developer’s Handbook

familiar with LotusScript. The figure below, may help in deciding which
tool to use in a particular situation:

Relationship among Data Access Features

Programmability/
Flexibility

E
as

y
to

 U
se

@
Function

LS:DO
ODBC

Spread
Sheet

What is ODBC?
The Open Database Connectivity (ODBC) standard is a set of functions
developed by Microsoft to access Relational Database Management Systems
(RDBMS) like Oracle, DB/2, Informix and others. There are two software
components required to use ODBC:

• ODBC Driver Manager is a set of APIs in the ODBC dynamic link
library. Those APIs are called by client programs like LS:DO, NotesSQL,
and so on, in order to access an RDBMS via ODBC.

• RDBMS ODBC driver is the driver for specific RDBMSs like NotesSQL,
DB2, Oracle etc. The ODBC driver allows you to issue any SQL
statements in Data Definition Language (DDL), Data Control Language
(DCL), and Data Manipulation Language (DML) using SQLExecute or
SQLExecDirect with the ODBC API. In addition, other ODBC Drivers
enable you to get information about columns attributes, index, privileges
of column, drivers, foreign keys of tables, and other RDBMS entities.

Chapter 14: Using Other Database Connectivity Tools 515

Using ODBC Connections
You can use ODBC with:

• APIs in your C, C++, Basic, LotusScript, or any other programming
language programs.

Note The programming language you use must support calls to a
Dynamic Link Library (DLL), because all of the ODBC functions are in the
ODBC DLL.

• Compliant high-level tools such as LS:DO, Lotus Spreadsheet
Component in LotusScript, and Data Access Object in Visual Basic.

ODBC Access Flow
The process by which a program accesses a database through ODBC is
shown below:

1. The program makes a call to the ODBC API.

2. The ODBC driver manager parses the requested command.

3. The ODBC driver manager decides which ODBC driver is required
according to database resource information registered in advance
through the operating system.

4. The requested command is passed to the specific ODBC driver for the
database being accessed.

5. The ODBC driver composes a series of commands for the particular
RDBMS and sends them to the RDBMS.

6. The results, if available, are sent to the calling routine.

RDB

API Call
Client

ODBC
Driver

Manager

ODBC
Driver

RDBMS

Data
Resource

Registration

LS:DO
Spreadsheet
Components, etc.

Oracle
DB2, etc.

NotesSQL ODBC Driver
Oracle ODBC Driver
DB2 ODBC Driver, etc.

ODBC.DLL
ODBC32.DLL

There are many ODBC drivers. Usually they are provided by RDBMS
vendors, but others come from independent software vendors like InterSolv
or Visigenic. The following figure conceptually shows LS:DO making
connection paths to RDBMSs as an example. It also shows other ODBC

516 Lotus Domino Release 5.0: A Developer’s Handbook

drivers that are capable of accessing ASCII delimited text files, spreadsheets,
and other types of data resources besides RDBMS:

Notes
DLL

Notes

LS:DO

Oracle
Server

SQL*Net
Client

ODBC
Driver Manager

...NotesSQL DB/2 Text FileAccessOracle Excel

ODBC Driver

DB

DB Text DB
DDCS/2,
CAE/2

Network Network Network

DB

DB
Notes
Server

SQL*Net
Listner DB

Oracle
Server

DB/2 DB

DB/2 DB

There are two types of ODBC driver managers in the Windows environment:
the 16-bit ODBC driver manager and the 32-bit ODBC driver manager. You
must ensure that the one you use matches the application environment you
are in. For example, when you use the 32-bit Windows version of Lotus
Notes, you need a 32-bit ODBC driver manager and a 32-bit RDBMS driver.

LotusScript:DataObject (LS:DO)

What Is LS:DO?
The LotusScript:Data Object (LS:DO) provides full Read and Write access to
external ODBC data sources using the complete control and flexibility of the
LotusScript structured programming language.

The LS:DO consists of a set of three classes:

• ODBCConnection

• ODBCQuery

• ODBCResultSet

These classes come complete with a powerful set of properties and methods
and full SQL capabilities. Yet at the same time, the LS:DO is easy to learn
and use because its design is consistent with LotusScript BASIC syntax
and the LotusScript Notes classes.

Chapter 14: Using Other Database Connectivity Tools 517

Concepts
The LS:DO is available on both the Notes client and the Domino server.
LS:DO is excellent for real-time data access from any LotusScript event in
Notes, such as clicking a button, exiting a field, or opening a document.
LS:DO real-time data access is the best choice for:

• Optimizing data entry
• On-the-fly lookups
• Immediate updates
• Input validation
• Avoiding duplicate entries
• Mobile user queries and updates

Optimizing Data Entry
Many designers use Notes as the data entry point for an application, which
can synchronize that data with a RDBMS or use the RDBMS for long-term
data storage and archiving. The LotusScript Data Object can provide the
following functionality on the fly:

• On-the-fly look up
Once a user enters a customer name and exits the field with the TAB key
or a mouse click, LotusScript code can immediately perform an SQL
query to one or several external back ends, retrieve the customer record
matching that name, and fill in the remaining fields in the form, such as
address, city, phone, and contact name.

• Immediate updates
LotusScript gives you the flexibility to update the information in the
RDBMS the moment the user saves a new document in Notes, or in
batches at scheduled intervals. When another document is created in
Notes, you can be sure that document will access the most current
information in the relational DBMS.

• Input validation
Is the right salesperson assigned to that customer in the Notes form? Is
the regular salesperson for that region currently overloaded with
assignments, indicating that a backup person should be assigned to the
task? The LotusScript Data Object can retrieve that information from the
DBMS that indicates these conditions, and the LotusScript fully
structured programming constructs enable you to evaluate that data and
act accordingly.

• Avoiding duplicate entries

Once a user enters a customer name, the LS:DO can query the back end for
variations on that customer name, for example, to ensure that the same
customer is not entered with an “Inc.” as opposed to a “Co.” in the DBMS.

518 Lotus Domino Release 5.0: A Developer’s Handbook

Mobile User Queries and Updates
One of the most exciting results of the intersection between RDBMSs and
Notes is that mobile Notes users can take their access to the RDBMS with them
on the road. For example, sales representatives on the road often find
themselves with last-minute opportunities to visit customers in different cities.
If the customer’s information is contained in the mainframe RDBMS, the
salesperson is forced to call someone in the office, and ask them to look up the
information, which cannot happen from a hotel room outside business hours.

The LotusScript Data Object has the ability to run on Domino servers as well
as clients, and coupled with Notes native replication capabilities, solves the
problem. With an integrated Notes/RDBMS application, a user can do the
following:

1. Compose a query request within an application on their mobile Notes
client, such as “What are the customer contacts and activity in this city?”

2. Replicate the query to the Domino server, where a waiting LS:DO agent
sees the new document, authenticates and performs the query, stores the
results in that document, and saves it.

3. Replicate the query results back to the user’s laptop in moments, even
during the same dial-up connection if they choose, for analysis and review.

Architecture
In addition to allowing users to issue SQL statements to RDBMSs, the LS:DO
also offers data manipulation capabilities. The LS:DO supports and manages
result sets as well as provides an interface for directly using SQL when
appropriate. The result set management takes the form of caching result sets,
supporting navigation through the result set, and managing individual row
updates regardless of the underlying driver’s cursor or ODBC conformance
capabilities.

The following diagram is a schematic representation of the components in
the LS:DO framework that allow a Notes application to access a database:

ODBC
Driver

Manager

ODBC
Driver DB

LS:DO
Connection
Query
ResultSet

Notes IDE

LSX

LotusScript

Chapter 14: Using Other Database Connectivity Tools 519

When to Use LS:DO
The LS:DO is best suited to handle the following situations:

• LotusScript programming environment. If you develop an application
using the LotusScript environment, you can easily utilize ODBC access
through the LS:DO classes.

• Low-volume data transfer. LS:DO is more suited for low-volume access
to data resources. From a performance perspective LS:DO is not well
suited to moving large volumes of data.

• Easy data access. When your application needs to both read and to
update data in an RDBMS, LS:DO is an easier way than the ODBC API
or the @DBCommand because of the classes allowing you to work with
result sets.

• Real-time direct access. LS:DO is integrated directly into a Notes
application and so on.

Differences Between LS:DO and ODBC
LS:DO is a high-level abstraction of the ODBC feature, that enables you to
design more complicated operations toward RDBMS, but requires more
detailed knowledge about the ODBC architecture and ODBC APIs. Let’s
look at three aspects of both methods:

• Programming Environment

• Functionality

• Performance

Programming Environment
Calling ODBC APIs requires passing many arguments. You have to be
careful with the different argument types. A wrong argument type may
cause unexpected severe errors, and could make your system unstable.

The LS:DO is more intuitive and at a higher level of abstraction than the
ODBC API. Also, the LotusScript development environment checks syntax
on the fly.

LS:DO is available only in LotusScript and some development environments
that are compliant with OLE clients, such as Visual Basic. LS:DO is one of the
LotusScript Class Libraries (LSXs). This enables you to benefit from the
object-oriented and event-driven programming environment provided by
the Notes Integrated Development Environment.

520 Lotus Domino Release 5.0: A Developer’s Handbook

Functionality
Through LS:DO classes, you can update data in a result set, which is then
automatically reflected to the original table. It is much easier to update data
using LS:DO methods than using an SQL statement.

ODBC functions are calls from C or C++ programs to the Dynamic Link
Library. There are three conformance levels:

• Core Level

• Extension Level 1

• Extension Level 2

There are more than 50 functions depending on the version number of the
ODBC driver manager and the ODBC driver.

The following table conceptually shows which method in LS:DO calls which
ODBC APIs. Each LS:DO method corresponds to a combination of some
ODBC APIs:

SQLNumResultCols
SQLColAttributes
SQLFetch
SQLGetData

ResultSet.GetValueFetch data from a
result set

SQLSetStmtOption
SQLExecDirect

ResultSet.ExecuteExecute an SQL

SQLAllocStmt
SQLTables
SQLFetch
SQLGetData

Connection.ListTablesList all tables in
a database

SQLAllocConnect
SQLBrowseConnect
SQLFreeConnect
SQLAllocConnect
SQLConnect

Connection.ConnectToEstablish a
connection to DB

SQLAllocEnv
SQLDataSources
SQLFreeEnv

Connection.ListDataSourcesList all data sources
registered

ODBC APILS:DO MethodFunctions

Performance
ODBC provides better performance than LS:DO in some cases because the
C++ program can directly access the ODBC driver manager, whereas LS:DO
has some overhead due to the language architecture. Although LS:DO can
make it easy to retrieve and update records in a result set, ODBC API calls

Chapter 14: Using Other Database Connectivity Tools 521

are more powerful because of more complex and efficient record data
handling using fetch and retrieve of records, parameterized SQL, and
cursor features.

Software Requirements
The software requirements are:

• ODBC driver manager 2.0 or later. You need to install the appropriate
ODBC driver manager as required by your operating system and by the
applications that use the ODBC features. The 32 bit ODBC driver manager
comes with Visual Basic 4.0, Lotus SmartSuite 97, Office95, Visual C++
4.0, and others. The 16 bit ODBC driver manager comes with Windows
3.1 and Windows 95.

• ODBC drivers for specific RDBMSs. For example, if you create a
program to access the Oracle DB server, you must install an Oracle
ODBC driver which corresponds to the ODBC driver manager type
already installed. There are many drivers provided by many software
companies for RDBMSs and other data resources as well.

Some of them are listed in the following table:

X*1XXText File

XSybase

XParadox

X*1XXOracle

XSQLServer

XIngres

XInformix

XFoxPro

XExcel

X*1XdBASE

XDB2

XAccess

X1-2-3

XNotes

LotusIntersolvMicrosoft

Note *1 This driver is bundled in Lotus SmartSuite.

522 Lotus Domino Release 5.0: A Developer’s Handbook

Registering ODBC Data Sources
To register ODBC data sources, follow these steps. Our example is based on
an Oracle DB Server connection for Windows 95. The basic operations are
practically the same on the other platforms.

1. Double-click the ODBC driver manager icon in the Control Panel.

Note The above icon image and icon title depend on the driver
manager you installed on your system.

2. The Data Sources dialog box displays. You can see all data sources
previously defined. To add a new data source, click the Add… button.

3. The Add Data Source dialog box displays. You can see all the ODBC
drivers installed on your PC. Select the ODBC driver for your
application and click OK. In our example, we selected the Oracle 72
ODBC driver:

Chapter 14: Using Other Database Connectivity Tools 523

4. If you select the Oracle ODBC driver, you’ll need to fill in the
appropriate information as follows. This dialog box will vary depending
on the driver you choose.

• The Data Source Name you enter will be the one you specify in your
programs, such as the ConnectTo method in LS:DO, whenever you
connect to the Oracle Database.

• The Description field is just an explanation for this data source.

• The SQL*Net Connect String is important to establish the connection.
In our case, the “T” means that the TCP/IP protocol is used during
communication. The rest of the string “OracleITSO” is a TCP/IP
hostname for the Oracle DB server on Windows NT. Optionally, you
can specify the Oracle instance ID here. For a full description and
different connect string examples, click the Help button of the Oracle7
ODBC Setup dialog box.

USELSX Statement to Enable LS:DO
The following statement must be specified in the Define (Globals) Event
(Declarations) within Notes:

Uselsx "*LSXODBC"

Note The leading “*” tells LotusScript to use the class registry to
look up the path of the LS:DO dynamic library being loaded. This is a
platform-independent way of loading LS:DO since each operating system
uses different methods.

524 Lotus Domino Release 5.0: A Developer’s Handbook

Mapping Data Types Between RDB and Notes DB
The following diagram shows the data type mapping between an Oracle
database and a Domino database through the LS:DO:

BIT

CHAR

RAW

NUMBER

LONGRAW

LONG

FLOAT

DATE

CHAR

VARCHAR2

VARCHAR
NUMERIC

DECIMAL

INTEGER

SMALLINT

FLOAT

REAL

DOUBLE

DATE

TIME

TIMESTAMP

VARCHAR

BINARY

VARBINARY

LONGVARCHAR

LONGVARBINARY

BIGINT

TINYINT

DATETIME

SHORT

BOOL

BINARY

LONG

DOUBLE

CHAR

TIME

DATE

VARIANT

INTEGER

BOOLEAN

LONG

SINGLE

STRING

DATETIME

DOUBLE

CURRENCY

Oracle7 FieldExpectedDataType Notes
FieldNativeDataType

How to Trace and Debug LS:DO
In this section, we will briefly touch on a few ways to debug and trace
applications that employ the LS:DO.

The structure for a connection between a Notes application using the LS:DO
and the target RDBMS is the same as in all ODBC-compliant systems.

The following diagram shows each connection layer and the respective
component. If a connection cannot be established for some reason, the
configuration of each of the components must be verified one by one.

Chapter 14: Using Other Database Connectivity Tools 525

The appropriate debugging or tracing tool is indicated by the caption circle
for each component.

Oracle DB Server

SQL*Net

TCP/IP

Network

SQL*Net

TCP/IP

RDBMS

Network Protocol

Database Protocol

Network Protocol

Database Protocol

Oracle ODBC Driver

LS:DO

ODBC Driver ManagerDriver Manager

ODBC Driver

ODBC Client

Notes ApplicationApplication

PING

TNSPING
SQL*PLUS

ODBC Trace

LS:DO Tool

ODBC Test

provided in this book

Using the ODBC Trace Option
Trace information issued by the ODBC API can be gathered using the trace
function in the ODBC Administrator program. To do this, follow these steps:

1. Run the ODBC Administrator program and click Options.…

526 Lotus Domino Release 5.0: A Developer’s Handbook

2. Select the Trace ODBC Calls check box. Click OK, and leave the ODBC
Administrator program.

Trace descriptions of the ODBC API calls in your program(s) using
LS:DO are saved in the “C:\sql.log” text file as a default. You may
change the log file name by clicking the Select File button in the dialog
box above. An example of some of the trace output is shown below:

SQLAllocConnect(henv004993F0, phdbc00483E0C);
SQLConnect(hdbc00483E0C, “dBaseDB1”, -3, “”, -3, “”, -3);
SQLGetInfo(hdbc00483E0C, 11, rgbInfoValue, 4, pcbInfoValue);
SQLGetInfo(hdbc00483E0C, 21, rgbInfoValue, 4, pcbInfoValue);
SQLAllocStmt(hdbc00483E0C, phstmt00488110);

Using the ODBC Test Tool
If you are using the Microsoft ODBC driver SDK, you can use the ODBC
Test tool which allows you to issue ODBC API function calls. In the
following example, we will test whether the connection to the database is
configured properly and, if so, try other calls to debug each of the layers.

1. Double-click the following icon to start the ODBC Test program.

Chapter 14: Using Other Database Connectivity Tools 527

2. Choose Connect - Full Connect from the menu bar.

3. You are prompted for the connection specifics. From the list box, choose
the Data Source you want to test the connection to. These are the data
sources you specified with the ODBC driver manager. In our example,
we chose the Millennia Oracle7 instance data source. If security is
enforced, you must specify the User ID and/or a password.

528 Lotus Domino Release 5.0: A Developer’s Handbook

4. You will see the results of the connection. If successful, you can select
from the other ODBC API function calls from the menu to test the
functionality of the connection and the results of the calls:

LS:DO Class Library
The classes that make up the LotusScript:Data Object provide you with the
following benefits:

• Connection sharing

Connections are cached to avoid the added overhead of establishing a
connection. In addition, since it is defined as an independent object, one
connection object can be used by multiple LotusScript SQL calls.

• Multiple query and result sets

You can define multiple query objects to generate multiple result set
objects which can all be executed against the same connection, and
manipulated from the same script.

• Bi-directional scrolling over result set

The ODBCResultSet object provides a scrolling cursor with methods
for navigating to the next, previous, first, and last rows.

• Result set search

The LocateRow method of the ODBCResultSet object provides the ability
to search for specific rows within the result set based on specified
criteria. This search capability executes faster than multiple queries or
comparing values from multiple rows in LotusScript.

Chapter 14: Using Other Database Connectivity Tools 529

• Cached results

The query result in the ODBCResultSet object is optionally cached in
memory (default setting), so it can be accessed later by other events in
the form, increasing performance and reducing DBMS connection time.
In addition, the cached result set gives you the ability to locate records
using LocateRow later.

• Update services

Updates to back-end DBMSs through a generic ODBC interface are
limited to SQL statements, where the user must ensure that the row to be
updated contains a unique record reference or can be otherwise uniquely
accessed through a cursor. LS:DO extends this capability by permitting
individual items in a result set to be modified without use of an SQL
statement using the SetValue method. These changes are then updated
to the back end database all at once.

• Driver transparency

Although different vendors’ ODBC drivers support varying
conformance levels, the LotusScript:Data Object assesses these
differences and often provides the same level of behavior across all
drivers and databases. The developer does not have to write separate
scripts for separate drivers.

The following figure represents the manner in which a LotusScript program
would use each class in an application access in a database:

Connection
Class

Query
Class

ResultSet
Class

Data
 Sources

Connection

Table
List

Column
List

SQL
Statements

Records
Fetch

Update

DDL
DCL
DML

LS:DO

530 Lotus Domino Release 5.0: A Developer’s Handbook

Relationship Among Classes
The three classes in the LS:DO are tightly related to one another as shown
in the following diagram:

SQL
Statement

Result Set
Records

LS:DO Classes

ODBCConnection
Object

ConnectTo
method

Execute
method

ODBCQuery
Object

Connection

SQL

ODBCResultSet
Object

Query

Event Handling
If needed, you can create event-handling subroutines for some ODBC
methods. An event-handling subroutine you create is called according to the
behavior of an appropriate ODBC method, after the On Event statement is
issued.

In the following example, an event handler, named presub1 is called, before
the ListDataSources method is called.

1. On Event statement
Dim connection As New ODBCConnection
On Event BeforeListDataSources From connection Call presub1

2. Event handler
Sub presub1(Source As ODBCConnection)
 '** Write your event handling script here
End Sub

Note Your event handler must be in the scope where the event occurs.

ODBCConnection Class
The ODBCConnection class allows you to establish a connection. It also
allows you to access some database catalog information, such as data source
lists, table lists, procedures lists, and so on.

Chapter 14: Using Other Database Connectivity Tools 531

Property
The following table shows the properties of the ODBCConnection Class:

R/WBooleanSilentMode

RBooleanIsTimedOut

option:
DB_SUPP_ASYNCHRONOUS
DB_SUPP_CURSORS
DB_SUPP_PROCEDURES
DB_SUPP_READONLY
DB_SUPP_SILENTMODE
DB_SUPP_TRANSACTIONS

RBooleanIsSupported(option)

RBooleanIsConnected

R/WBooleanExclusive

R/WIntegerDisconnectTimeOut

RStringDataSourceName

ArgumentRead/ WriteData TypeProperty

Note Boolean is not a pre-defined data type in LotusScript. But you can use
a constant value (TRUE and FALSE) as a Boolean data type.

Method
The following table shows the ODBCConnection methods with the
corresponding arguments and events.

Continued

Constant
*1

GetError

BeforeExecProcedure
AfterExecProcedure

DBstsNCON
DBstsODBC

BooleanExecProcedure(name$,
arg$)

BeforeDisconnect
AfterDisconnect
TransactionUpdate

DBstsNCONBooleanDisconnect

BeforeConnect
AfterConnect
BeforeConnectTo
AfterConnectTo

DBstsCANF
DBstsSVRQ
DBstsCCON
DBstsACCS

BooleanConnectTo(source$ [,
userID$, password$])

EventError
Constant

Return
Value Type

ArgumentMethod

532 Lotus Domino Release 5.0: A Developer’s Handbook

BeforeListTables
AfterListTables

DBstsNCON
DBstsACCS

Array of
String

ListTables([source$
[, userID$, password$
]])

BeforeListProcedures
AfterListProcedures

DBstsNCON
DBstsACCS

Array of
String

ListProcedures(
[source$ [, userID$,
password$])

BeforeListFields
AfterListFields

DBstsNCON
DBstsNCOL

Array of
String

ListFields(
[tableName$])

BeforeListDataSources
AfterListDataSources

Array of
String

ListDataSources

DBstsCANFStringGetRegistrationInfo
(source$)

Stringerror%:
DB_LAST
ERROR or
Constants
*1

GetExtendedError
Message([error%])

Stringerror%:
DB_LAST
ERROR or
Constants
*1

GetErrorMessage([
error%])

EventError
Constant

Return
Value Type

ArgumentMethod

*1 Error number list is shown in ODBCResultSet section.

Note Most of the pre-defined data types in LotusScript are represented by
the following suffix types:

$String

!Single

&Long

%Integer

#Double

@Currency

SuffixData Type

Chapter 14: Using Other Database Connectivity Tools 533

Sample Uses of the ODBCConnection Class:
1. To get a data source list registered by the ODBC administrator, use the

ListDataSources method of the ODBCConnection class.
Dim con As New ODBCConnection
Dim dl As Variant
dl = con.ListDataSources
'** Keywords is a field name in which a data source list is
saved
keyDoc.Keywords = dl

2. To get a table list owned by a database, use the ListTables method of the
ODBCConnection class.
Dim con As New ODBCConnection
Dim tl As Variant
'** sampleDB1 is a database name registered in this example
tl = con.ListTables("sampleDB1")
'** Keywords is a field name in which a table list is saved
keyDoc.Keywords = tl

Note When the ListTables method is issued, the SQLConnect ODBC
API is called in LS:DO before getting a table list; so you don’t need to
execute the ConnectTo method.

3. To get a column name list owned by a table, use the ListFields method of
the ODBCConnection class.
Dim con As New ODBCConnection
Dim Clist As Variant
Dim status As Variant
'** sampleDB1 is a database name registered in this example
status = con.ConnectTo("sampleDB1")
'** courses is a table name in the sampleDB1 database
CList = con.ListFields("courses")
'** Keywords is a field name in which a column list is saved
keyDoc.Keywords = Clist

ODBCQuery Class
The ODBCQuery class is used to hold the ODBCConnection object in which
a connection is established, and to hold a SQL statement you want to use to
perform the inquiry. The SQL statement is parsed through the ODBC driver
which your application requires.

Property
The three properties of this class are shown below:

R/WStringSQL

R/WIntegerQueryExecuteTimeOut

WODBCConnection ObjectConnection

Read/WriteData TypeProperty

534 Lotus Domino Release 5.0: A Developer’s Handbook

Method
The ODBCQuery class provides the following methods:

Stringerror%:
DB_LASTERROR or Constants *1

GetExtendedErrorMessage
([error%])

Stringerror%:
DB_LASTERROR or Constants *1

GetErrorMessage([error%])

Constant GetError

Return ValueArgumentMethod

*1 Error number list is shown in ODBCResultSet section.

Sample Uses of the ODBCQuery Class:
This sample shows the execution of a SQL statement using the Execute
method in ODBCResultSet. The following steps are performed before
carrying out the Execute method. The Connection method and the SQL
property in ODBCResultSet class are also used in this example.

Dim con As New ODBCConnection
Dim qry As New ODBCQuery
Dim res As New ODBCResultSet
Dim status As Variant
'** sampleDB1 is a database name registered in this example
status = con.ConnectTo("sampleDB1")
Set qry.Connection = con
'** courses is a table name in the sampleDB1 database
qry.SQL = "select * from courses"
Set res.Query = qry

ODBCResultSet Class
The ODBCResultSet class has many functions that are used to handle records
which are termed result sets. A result set holds the retrieved records of a
SQL query which is specified with the ODBCQuery object.

Property
The following table shows the properties available with the ODBCResultSet
Class:

continued

R/WIntegerCurrentRow

R/WBooleanCommitOnDisconnect

R/WIntegerCacheLimit

R/WBooleanAutoCommit

R/WBooleanAsynchronous

Read/WriteData TypeProperty

Chapter 14: Using Other Database Connectivity Tools 535

R/WBooleanReadOnly

WODBCQuery ObjectQuery

WBooleanOverride

RIntegerNumRows

RIntegerNumColumns

R/WIntegerMaxRows

RBooleanIsResultSetAvailable

RBooleanIsEndOfData

RBooleanIsBeginOfData

RBooleanHasRowChanged

R/WIntegerFetchBatchSize

Read/WriteData TypeProperty

Methods
The methods of the ODBCResultSet class can be categorized into the
following areas:

• SQL execution and transaction control

• Result set row navigation and location

• Accessing column values

• Result set row modification operations

• Column attributes operations

• SQL parameter operations

The following tables show the methods based on the above categories.

SQL Execution and Transaction
These methods are used to issue a SQL statement and to commit or roll back
a transaction.

continued

BeforeClose
AfterClose

BooleanOption:
DB_CLOSE
DB_COMMIT
DB_ROLLBACK

Close(option)

EventError
Constant

Return
Value
Type

ArgumentMethod

536 Lotus Domino Release 5.0: A Developer’s Handbook

BeforeTransactions
AfterTransactions

BooleanOption:
DB_COMMIT
DB_ROLLBACK

Transactions(option)

BeforeExecute
AfterExecute
AsynchOperation
Complete

DBstsODBCBooleanOption:
DB_CANCEL

Execute([option])

EventError
Constant

Return
Value
Type

ArgumentMethod

Result Set Row Locating Operations
These methods are used to locate a cursor on a result set which is produced
by the Execute method.

BeforePrevRow
AfterPrevRow
BeforeRowPositionChange
AfterRowPositionChange

DBstsINVR
DBstsCARR

BooleanPrevRow

BeforeLocateRow
AfterLocateRow
BeforeRowPositionChange
AfterRowPositionChange

DBstsINVR
DBstsEOFD

BooleanNextRow

BeforeLocateRow
AfterLocateRow
BeforeRowPositionChange
AfterRowPositionChange

DBstsCARR
DBstsEOFD
DBstsNODA

Booleancolumn is
Integer or
String

LocateRow(column,
value$ [, column,
value$,])

BeforeLastRow
AfterLastRow
BeforeRowPositionChange
AfterRowPositionChange

BooleanLastRow

BeforeFirstRow
AfterFirstRow
BeforeRowPositionChange
AfterRowPositionChange

DBstsINVRBooleanFirstRow

EventError ConstantReturn
Value
Type

ArgumentMethod

Chapter 14: Using Other Database Connectivity Tools 537

Accessing Column Value Operations
These methods are used to access specific column values and to check
column properties.

AfterSetValue
BeforeSetValue

DBstsRDON
DBstsRDEL
DBstsINVC
DBstsCNVR
DBstsNODA

Booleancolumn is Integer
or String

SetValue(column, value)

DBstsINVCBooleancolumn is Integer
or String

IsValueNull(column)

DBstsINVCBooleancolumn is Integer
or String

IsValueAltered(column)

BeforeGetValue
AfterGetValue

DBstsINVC
DBstsNODA
DBstsCNVR

Variantcolumn is Integer
or String

GetValue(column
[, variable])

EventError ConstantReturn Value
Type

ArgumentMethod

Result Set Row Modification Operations
These methods enable you to dynamically add and delete rows from within
the result set. Furthermore, you can retrieve the row status and you can
update the altered result set in the database.

BeforeUpdateRow
AfterUpdateRow
TransactionsPending
RowContentsChanged

DBstsRDON
DBstsRDEL
DBstsCXIN
DBstsNUNQ
DBstsRCHG
DBstsRUNC
DBstsUPDB

BooleanUpdateRow

BeforeRefreshRow
AfterRefreshRow

DBstsNUNQ
DBstsINVR

BooleanRefreshRow

DBstsNODADB_UNCHANGED
DB_ALTERED
DB_UPDATED
DB_DELETED
DB_NEWROW

GetRowStatus

BeforeDeleteRow
AfterDeleteRow
RowContentsChanged
TransactionsPending

DBstsINVR
DBstsNUNQ
DBstsRCHG
DBstsRDON

BooleanDeleteRow
(tableName$)

BeforeAddRow
AfterAddRow

DBstsAHVR
DBstsRDON
DBstsNOEX

BooleanAddRow

EventError ConstantReturn Value TypeArgumentMethod

538 Lotus Domino Release 5.0: A Developer’s Handbook

Column Attributes Operations
These methods allow you to access information about the column attributes.

DBstsINVCIntegercolumn is Integer
or String

FieldName(column)

DBstsINVCConstant *2column is Integer
or String

FieldID(column)

DBstsINVCStringFieldNativeDataType
(columnID%)

DBstsINVCArray with elements *1column is Integer
or String

FieldInfo(column)

DBstsINVCIntegerFieldID(columnName$)

DBstsINVCDB_TYPEUNDEFINED
DB_CHAR
DB_SHORT
DB_LONG
DB_DOUBLE
DB_DATE
DB_TIME
DB_BINARY
DB_BOOL
DB_DATETIME

column is Integer or
String.
dataType:
DB_TYPEUNDEFINED
DB_CHAR
DB_SHORT
DB_LONG
DB_DOUBLE
DB_DATE
DB_TIME
DB_BINARY
DB_BOOL
DB_DATETIME

FieldExpectedDataType
(column [, dataType])

Error
Constant

Return Value TypeArgumentMethod

SQL Parameter Operations
These methods are used to define new SQL parameters and to retrieve the
values of those already existing.

BeforeSetParameter
AfterSetParameter

Booleanparameter is Integer
or String

SetParameter(parameter,
value$)

IntegerNumParameters

BeforeGetParameterName
AfterGetParameterName

StringGetParameterName
(parameterID%)

BeforeGetParameter
AfterGetParameter

Variantparameter is Integer
or String

GetParameter(parameter)

EventReturn
Value Type

ArgumentMethod

Chapter 14: Using Other Database Connectivity Tools 539

Error Operations
These methods are used to deal with error messages.

Stringerror%:
DB_LASTERROR
or Constants *3

GetExtendedErrorMessage([
error%])

Stringerror%:
DB_LASTERROR
or Constants *3

GetErrorMessage([error%])

Constant *3GetError

Return Value TypeArgumentMethod

*1 The following table shows return value constants of the FieldInfo method.

DB_INFO_NATIVE_DATATYPE

DB_INFO_UNSIGNEDDB_INFO_MONEY

DB_INFO_TABLENAMEDB_INFO_LENGTH

DB_INFO_SQLDATATYPEDB_INFO_EXPECTED_DATATYPE

DB_INFO_SETTABLEDB_INFO_DISPLAYSIZE

DB_INFO_SEARCHABLEDB_INFO_COMPUTED

DB_INFO_SCALEDB_INFO_COLUMNNAME

DB_INFO_READONLYDB_INFO_COLUMNID

DB_INFO_PRECISIONDB_INFO_CASESENSITIVE

DB_INFO_NULLABLEDB_INFO_AUTOINCREMENT

*2 The following table shows return value constants of the
FieldNativeDataType method.

SQL_LONGVARCHARSQL_TIMESQL_SMALLINT

SQL_BITSQL_VARBINARYSQL_DATESQL_INTEGER

SQL_TINYINTSQL_BINARYSQL_DOUBLESQL_DECIMAL

SQL_BIGINTSQL_VARCHARSQL_REALSQL_NUMERIC

SQL_LONGVARBINARYSQL_TIMESTAMPSQL_FLOATSQL_CHAR

*3 The following table shows error constants.

Continued

DBstsCXINDBstsCNVRDBstsFILTDBstsODBCDBstsNCON

DBstsRUNCDBstsCANFDBstsFITYDBstsBADPDBstsMEMF

DBstsRCHGDBstsBROWDBstsDRVNDBstsNCOLDBstsFAIL

DBstsRDONDBstsTMPLDBstsDSTYDBstsINVCDBstsSUCCESS

540 Lotus Domino Release 5.0: A Developer’s Handbook

DBstsNUNQDBstsSVRQDBstsENTRDBstsEOFD

DBstsUPDBDBstsNAPEDBstsTYPEDBstsNODA

DBstsRDELDBstsINTEDBstsNOSVDBstsACCSDBstsCARR

DBstsNIRCDBstsSQLPDBstsNAUTDBstsINTRDBstsINVR

DBstsCPARDBstsHSTMTDBstsNODRDBstsSNFDDBstsNOEX

DBstsAHVRDBstsCNVDDBstsINSTDBstsLIBMDBstsCCON

Sample Programs Using the ODBCResultSet Class
In this example we get a column value list.

Dim con As New ODBCConnection
Dim qry As New ODBCQuery
Dim res As New ODBCResultSet
Dim status As Variant
'** sampleDB1 is a database name registered in this
example
status = con.ConnectTo("sampleDB1")
Set qry.Connection = con
'** courses is a table name in the sampleDB1 database
qry.SQL = "select * from courses"
Set res.Query = qry
Call res.execute
Dim num As Integer
num = 0
Dim vl As Variant
Redim vl(num)
Do
'** name is a column name in the courses table
 vl(num) = res.GetValue("name")
 num = num + 1
 Redim Preserve vl(num)
Loop While res.NextRow
'** CValue is a field name in which a value list is saved
gDoc.CValue = vl

Server Side Processing for Web Applications
When you need to access external databases via a Web browser and the
Domino server you can use the LS:DO.

The principle of accessing the data remains the same; you must define an
ODBC connection to your data source and you must write the LS:DO code to
access the database in the same way. However, the LS:DO LotusScript code
needs to be placed in an agent that is run via a URL command and the
display of the data needs to be formatted in HTML.

Chapter 14: Using Other Database Connectivity Tools 541

To better explain how you can use the LS:DO within your Web application,
we will use an example that queries data from the DB/2 SAMPLE database
and displays it in a Web page. We will also demonstrate how to drill down
further into the database with subsequent queries. In our example we use
information from the EMPLOYEE table to display information on employees
based on their employee number.

1. We assume that you have already set up an ODBC connect using the ODBC
manager to the EMPLOYEE table within the DB/2 SAMPLE database.
To set up an ODBC connection, see the example earlier in this chapter.

2. Create a new form in your database and add the following fields and
buttons:

NoneButtonSubmit

@Return("[http://yourservernameinhere/" +
@ReplaceSubstring(@Subset(@DbName;1);"\\";"/")
+ "/EmployeeLookup?OpenAgent&"+EMPNO+"]")

Computed
Text

$$Return

Editable TextEMPNO

0 (Zero)Computed
Text

SaveOptions

Field CodeField TypeField Name

3. Below is an example of the new form in Domino Designer.

542 Lotus Domino Release 5.0: A Developer’s Handbook

4. Create an agent and name it EmployeeLookup, check the Shared check
box, select Manually From Agent List in the When Should this Agent
Run field, select All Documents in Database from the Which
document(s) should this agent run on field, select LotusScript from the
Run field and add the following code:

Click Options and enter:
USELSX "*LSXODBC"

Click Initialize and enter:
Sub Initialize

Set session = New NotesSession
Set conn = New ODBCConnection
Set query = New ODBCQuery
Set data = New ODBCResultSet
Set query.connection = conn
Set data.query = query
Set doc = session.DocumentContext
Set db = Session.CurrentDatabase

conn.SilentMode = True
USERNAME$ = "DB2Admin"
PASSWORD$ = "password"

URLString = doc.Query_String(0)

URLLength = Len(URLString)
ParamPosition = Instr(URLString, "&") + 1
WebParam = Mid(URLString, ParamPosition,

URLLength-ParamPostion)
 'Print WebParam

If Not conn.ConnectTo("SAMPLE", USERNAME$, PASSWORD$)
Then

Print "Not OK, Could not Connect!"
error% = Conn.GetError
message$ = Conn.GetErrorMessage(error%)
extendedMessage$

Conn.GetExtendedErrorMessage(error%)
Print message$ & "
"
Print "Error Code: " & Str$(error%)
Print "Extended Error: " & ExtendedMessage$ & "<HR>"
Exit Sub

End If
query.SQL = "SELECT * FROM EMPLOYEE WHERE EMPNO='" &

WebParam & "'"
If Not data.Execute Then

Print data.GetExtendedErrorMessage,,

Chapter 14: Using Other Database Connectivity Tools 543

data.GetErrorMessage
Exit Sub

End If
Do

data.NextRow
FirstName = data.GetValue("FIRSTNME", firstName)
LastName = data.GetValue("LASTNAME", lastName)
MidInit = data.GetValue("MIDINIT", MidInit)
WorkDept = data.GetValue("WORKDEPT", WorkDept)
PHONENO = data.GetValue("PHONENO", PhoneNo)
HIREDATE = data.GetValue("HIREDATE", HireDate)
JOB = data.GetValue("JOB", Job)
EDLEVEL = data.GetValue("EDLEVEL", EdLevel)
SEX = data.GetValue("SEX", Sex)\
BIRTHDATE = data.GetValue("BIRTHDATE", BirthDate)
SALARY = data.GetValue("SALARY", Salary)
BONUS = data.GetValue("BONUS", Bonus)
COMM = data.GetValue("COMM", Comm)

Print "<HEAD><BODY>"
Print "<H3>This is the information for employee: " &

WebParam & "</H3>"

Print "First Name: " & firstName & "
"
Print "Initials: " & MidInit & "
"
Print "Last Name: " & lastName & "
"
Print "
"
Print "Work Department: " & workdept &
"" & "
"

Print "Phone Number: " & PhoneNo & "
"
Print "Hire Date: "& HireDate & "
"
Print "Job: " & Job & "
"
Print "Education Level: "& EdLevel & "
"
Print "
"
Print "
"
Print "Thank-You"

Loop Until data.IsEndOfData

data.Close(DB_CLOSE)
conn.Disconnect

End Sub

5. Open your Web browser and compose a new document using the form
you created. For our server, the URL was:
http://red5.lotus.com/LSDO.nsf/Form1?open.

544 Lotus Domino Release 5.0: A Developer’s Handbook

You should see the following in your browser:

Note Some of the hidden fields are actually displayed on this screen to
show you their computed values.

6. Enter an employee number, some valid numbers in the EMPLOYEE
table of the SAMPLE database are 000010, 000020, 000030, 000050. Click
the Submit button on the form.

Chapter 14: Using Other Database Connectivity Tools 545

7. After a few seconds you will see the following on the screen. (We chose
employee number 000010.)

How Does This Work?
If we take a closer look at the steps we took to create this example, the first
part of the process is triggered when the user clicks the Submit button from
their Web browser. Since we have a $$Return field in our form, the value of
this is evaluated and then executed on the Domino server.

When the user selects an employee number the $$Return field evaluates to
the following URL, which is processed by the Domino Web server and runs
the EmployeeLookup agent with a parameter of 000010:

http://red5.lotus.com/LSDO.nsf/EmployeeLookup?OpenAgent&00010

As the agent is initiated, one of the first things it does is parse the command
line that was passed to it via the DocumentContext method of the
NotesSession which gives us access to the CGI variable URLString. The
following code extract shows this:

' Get a handle to the current doc in memory
Set doc = session.DocumentContext
' Retrieve the CGI variable URLString
URLString = doc.Query_String(0)
' URLString should equal ?OpenAgent&000010

546 Lotus Domino Release 5.0: A Developer’s Handbook

' Calculate how long the string is
URLLength = Len(URLString)
' Find the position of the & in the string
ParamPosition = Instr(URLString, "&") + 1
' Now we can extract the employee number from the string
WebParam = Mid(URLString, ParamPosition,
URLLength-ParamPostion)
' If we need to we can send the parameter to the Web browser
' to check it.
'Print WebParam

Now that we know the employee number we can use the LS:DO to query the
EMPLOYEE table in the SAMPLE database and extract all the information
we require. This is done with the following SQL query:

SELECT * FROM EMPLOYEE WHERE EMPNO='" & WebParam & "'"

The final thing to do is output the information onto the Web browser. This is
done using the LotusScript Print command and a combination of HTML tags
and the variables we assigned.

Digging Deeper
If you look back at the EmployeeLookup agent code we created earlier, you
will see a line that looks like this:

Print "Work Department: <a href=./DeptLookup?OpenAgent&" &
workdept & ">" & workdept & "" & "
"

This line of code creates an HTML link to another agent in the database
called DeptLookup. If you look carefully at the figure below, you will see
how this looks.

Notice that the line beginning with Work Department displays its value as a
URL. Clicking this hotspot will run the agent DeptLookup on the Domino
server with a parameter of A01. The code for this agent is very similar to the
EmployeeLookup agent but this time it retrieves a list of all employees that
work in the same department.

The code for the DeptLookup Agent is shown below:
Sub Initialize

Set session = New NotesSession
Set conn = New ODBCConnection
Set query = New ODBCQuery

Chapter 14: Using Other Database Connectivity Tools 547

Set data = New ODBCResultSet
Set query.connection = conn
Set data.query = query
Set doc = session.DocumentContext
Set db = Session.CurrentDatabase

conn.SilentMode = True
USERNAME$ = "DB2Admin"
PASSWORD$ = "password"

URLString = doc.Query_String(0)

URLLength = Len(URLString)
ParamPosition = Instr(URLString, "&") + 1
WebParam = Mid(URLString, ParamPosition,

URLLength-ParamPosition)
 'Print WebParam

If Not conn.ConnectTo("SAMPLE", USERNAME$, PASSWORD$)
Then

Print "Not OK, Could not Connect!"
error% = Conn.GetError
message$ = Conn.GetErrorMessage(error%)
extendedMessage$ =

Conn.GetExtendedErrorMessage(error%)
Print message$ & "
"
Print "Error Code: " & Str$(error%)
Print "Extended Error: " & ExtendedMessage$ & "<HR>"
Exit Sub

End If
query.SQL = "SELECT * FROM EMPLOYEE WHERE WORKDEPT='" &

WebParam & "'"
If Not data.Execute Then

Print data.GetExtendedErrorMessage,,
data.GetErrorMessage

Exit Sub
End If
Print "<HEAD><BODY>"
Print "<H3>These are other employees that work in

department " & WebParam & "</H3>"
Print "<TABLE border="1">"
Print "<TR>"
Print "<TD>FirstName</TD>"
Print "<TD>Init</TD>"
Print "<TD>LastName</TD>"
Print "<TD>Department</TD>"
Print "<TD>Phone</TD>"
Print "<TD>HireDate</TD>"
Print "<TD>Job </TD>" Print "<TD>EdLevel</TD>"
Print "<TR>"

548 Lotus Domino Release 5.0: A Developer’s Handbook

Do
data.NextRow
EmpNo = data.GetValue("EMPNO", Empno)
FirstName = data.GetValue("FIRSTNME", firstName)
LastName = data.GetValue("LASTNAME", lastName)
MidInit = data.GetValue("MIDINIT", MidInit)
WorkDept = data.GetValue("WORKDEPT", WorkDept)
PHONENO = data.GetValue("PHONENO", PhoneNo)
HIREDATE = data.GetValue("HIREDATE", HireDate)
JOB = data.GetValue("JOB", Job)
EDLEVEL = data.GetValue("EDLEVEL", EdLevel)
SEX = data.GetValue("SEX", Sex)
BIRTHDATE = data.GetValue("BIRTHDATE", BirthDate)
SALARY = data.GetValue("SALARY", Salary)
BONUS = data.GetValue("BONUS", Bonus)
COMM = data.GetValue("COMM", Comm)
Print "<TR>"
Print "<TD><a href=./EmployeeLookup?OpenAgent&" &

EmpNo & ">" & firstName & "" & "</TR>"
Print "<TD>" & MidInit & "</TR>"
Print "<TD>" & lastName & "</TR>"
Print "<TD>" & workdept & "</TR>"
Print "<TD>" & PhoneNo & "</TR>"
Print "<TD>" & HireDate & "</TR>"
Print "<TD>" & Job & "</TR>"
Print "<TD>" & EdLevel & "</TR>"
Print "</TR>"
Print "
"

Loop Until data.IsEndOfData
Print "</TABLE>"
Print "</BODY></HEAD>"

data.Close(DB_CLOSE)
conn.Disconnect

End Sub

Notice that this agent formats the output using an HTML table. This is
particularly good for displaying tabular information back to a Web browser
and is fairly simple once you understand the HTML tags.

Ends the table</TABLE>

Ends the current row</TR>

Ends the current column</TD>

Defines the start of a new column<TD>

Defines the start of a new row<TR>

Defines the start of a new table<TABLE>

DescriptionHTML Tag

Chapter 14: Using Other Database Connectivity Tools 549

Below is a figure of how the form looks when displayed in a Web browser:

Again we have added a small piece of code in this agent that allows the user
to retrieve more information by clicking a name in the table and running the
EmployeeLookup agent again. This is achieved with the following line of
code:

Print "<TD>" &
firstName & "" & "</TR>"

With a little imagination it is possible to give your employees or customers
real-time access to your company’s relational databases and the capabilities
to drill down through the information from a Web browser.

Running Multiple Instances of an Agent
When Domino is being used as a Web server to access and display data from
external sources via the LS:DO and LotusScript agents, you need to add a
line into the NOTES.INI file on the Domino server.

DominoAsynchonizeAgents=1

This enables an agent to be run by more than one person at the same time.
By default the Domino server only runs one copy of an agent at a time and
queues other requests.

550 Lotus Domino Release 5.0: A Developer’s Handbook

Using @DB Functions to Access Other Databases Through ODBC
@DBCommand, @DBLookup and @DBColumn are Notes functions that
enable you to access RDBMSs which use the underlying ODBC interface.
The @DB formulas are read-only.

The basic purpose of these functions is to create value lists for keyword
fields. @DBLookup and @DBColumn can be used to query a relational
database; @DBCommand is only used for executing stored procedures.
@DBCommand does not return result sets. If you need a more customized
and more complex query, LS:DO is a better option.

When to Use
Lotus Notes provides fast and easy-to-use read access to ODBC-compliant
DBMSs via @DB functions. Notes @DB functions give developers the power
of three frequently-used query tasks:

• Generating Keyword Lists

The @DBColumn function in the Notes formula language generates Notes
keyword lists from internal, as well as external, data sources. The same
function supports keyword value lookups in tables stored in a DBMS
through ODBC. For example, a Notes @DBColumn field formula can
present a keyword list of customer names stored in a DBMS table when
composing a document in a Notes customer contact tracking database.

• Performing Lookup Operations

The @DBLookup function looks up a value in one field based on the value
of a related field. For example, it will look up a customer phone number
in a DBMS when given a customer name in Notes. Like @DBColumn,
@DBLookup works both with other Notes databases and with external
data sources through ODBC. The @DBColumn and @DBLookup functions
can be used in other Notes formula contexts as well, such as input
validation or translation formulas.

• Launching External DBMS Stored Procedures

Database procedures and insert statements can be triggered with the
@DBCommand function.

Note Some of these functions inherently involve a delay before they
complete; so in order to set user expectations, it is sometimes a good idea to
code the functions behind a button so that the user expects some delay
before the function is completed.

Chapter 14: Using Other Database Connectivity Tools 551

How to Use @DB Functions
The @DB functions are summarized in the following table:

(any SQL statement)Triggers stored procedures in the
external database.

@DBCommand

SELECT column FROM
table WHERE condition

Performs a lookup. Returns a specified
column value in the row that matches
the specified condition.

@DBLookup

SELECT DISTINCT
column_name FROM
table_name

Generates a keyword list. Returns a
specified column for all rows in the
specified table.

@DBColumn

Equivalent SQLDescriptionsFunctions

 @DBColumn
The @DBColumn syntax is:

@DBColumn("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; TableName ; ColumnName : NullHandling ;
Distinct : Sort)

Parameters:

X“Ascending”
“Descending”

Sort DirectionSort)

X“Distinct”Remove duplicate
values

Distinct:

X“Fail”
“Discard” (Default)
“ReplacementValue”

Null HandlingNULLHandling,

Column NameColumnName:

Table NameTableName,

XPasswordsPassword1:Password2,

XUser IDsUserID1:UserID2,

Database resource
name

DataSource,

X“Cache” (Default)
“NoCache”

Inquiry CacheCache,

OptionalChoiceDescription@DBColumn(“ODBC”:

552 Lotus Domino Release 5.0: A Developer’s Handbook

@DBLookup
The @DBLookup syntax is:

@DBLookup("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; TableName ; ColumnName :
NullHandling ; KeyColumn ; Key ; Distinct : Sort)

Parameters:

X“Ascending”
“Descending”

Sort DirectionSort)

X“Distinct”Remove duplicate
values

Distinct:

Search String in
KeyColumn

Key,

Column Name to be
looked into

KeyColumn,

X“Fail”
“Discard” (Default)
“ReplacementValue”

Null HandlingNULLHandling,

Column NameColumnName:

Table NameTableName,

XPasswordsPassword1:Password2,

XUser IDsUserID1:UserID2,

Database resource
name

DataSource,

X“Cache” (Default)
“NoCache”

Inquiry CacheCache,

OptionalChoiceDescription@DBLookup(“ODBC”:

@DBCommand
The @DBCommand syntax is:

@DBCommand("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; SQL ; NullHandling)

Chapter 14: Using Other Database Connectivity Tools 553

Parameters:

X“Fail”
“Discard” (Default)
“ReplacementValue”

Null HandlingNULLHandling)

SQL StatementSQL

XPasswordsPassword1:Password2,

XUser IDsUserID1:UserID2,

Database resource
name

DataSource,

X“Cache” (Default)
“NoCache”

Inquiry CacheCache,

OptionalChoiceDescription@DBCommand(“ODBC”:

Summary
This chapter covered NotesSQL, the Domino JDBC driver and LotusScript
Data Object (LS:DO). We discussed the circumstances where each method
should be applied and also gave some examples of their use.

554 Lotus Domino Release 5.0: A Developer’s Handbook

Domino Global WorkBench is a set of software tools that helps you manage
the localization (translation) of the design elements in Domino databases,
especially Web site databases. It also includes synchronization features that
help you manage the content of localized databases across languages. Also,
when the design of a database changes, you can use the update features of
Domino Global WorkBench to transmit the changes easily through to the
localized versions.

Domino Global WorkBench is part of Domino Designer but has its own
installation program.

Who Benefits from Domino Global WorkBench
Typical users of applications prepared by Domino Global WorkBench are
companies that want to reach customers in several countries through the
World Wide Web and companies with offices in several countries that need
localized intranet applications.

What is Localization?
“Localizing” a database (.NSF file) or database template (.NTF file) means
creating a version of it in another language. In general, localization involves:

1. Analyzing and sometimes modifying the design to make the remaining
localization tasks simpler and identifying the text that is not to be
translated (for reasons of functionality).

2. Translating the text in the design elements. All text seen by users is
translated, as well as some text that is not seen by users.

3. Modifying the layout. Translations are often significantly longer than the
original text, and this means that certain parts of the design, for example
tables and navigators, will usually have to be adjusted.

Which Processes Support Domino Global WorkBench
Domino Global WorkBench is used by the application developer during the
development and maintenance process and by the content provider during
the ongoing content updating process across languages.

Chapter 15
Domino Global WorkBench

555

The following figure shows an example of a localization process during
development and maintenance and the roles involved in it:

Develo pers Localization
Develo per

Translators Localization
Validators

DEVELOP

EXTRACT
TRANSLATABLE

MATERIAL

PREPARE
GLOSSARIES

TRANSLATE

BUILD LANGUAGE
VERSIONS

VERIFY

�����

The process in the figure is just a simple example. Domino Global
WorkBench does not require a specific process to be followed, but offers full
flexibility in integrating with the process you are using for your
development and content creation.

Note The people shown in the figure represent different roles. You don’t
need a huge development organization to use Domino Global WorkBench.
One person may cover several roles; for example, a developer may also be
the localization developer as well as the translator.

556 Lotus Domino Release 5.0: A Developer’s Handbook

The next figure shows an example of how Domino Global WorkBench can
support the creation of content for several languages through its
synchronization technique:

Content
Providers

Synchronizer Translators Local
Content
Approver

Create Document

Copy to other
Language
Databases

Translate

Verify

MT

US US US US US FR DK US FR DK

? ?

For a new document (if it is marked as translatable) the synchronizer creates
a copy of it in each of the other languages supported by the application (or
site). Using Domino workflow, an automated process can be created where
the new language documents are assigned to a translator or to machine
translation. After the translation, the workflow process can bring the
documents on to be controlled for the correct language and content before
making them visible to the users of the application or site. If you create
synchronized unilingual databases, you also have the option of including a
“language switchbar.” This is an element that is added, during building, to
any forms that are marked “Translatable.” It provides doclinks to other
language versions of documents created from the form. Users simply click
the language they want to see on the switchbar. We will cover Domino
Global WorkBench from the developers perspective in the following sections
of this chapter:

• Concepts, Databases, and Tools in Domino Global WorkBench.

This section introduces the most important elements of Domino Global
WorkBench.

Chapter 15: Domino Global WorkBench 557

• Localizing an Application.

This section walks through an example of the process that the
localization developer must go through to localize an application.

• Preparing Your Database - Tips for Developers.

To minimize any rework on the application during the localization
process, the designer and developer must focus on the fact that the
application is to be translated into several languages from the beginning
of the design and development. This section provides tips that make it
easier to design and develop translatable Domino applications.

Note Domino Global WorkBench offers very rich functionality. This chapter
is not exhaustive. For a detailed description of all the functions and features
of the product, refer to the documentation that comes with Domino Global
WorkBench.

Concepts, Databases, and Tools in Domino Global WorkBench
This section gives an overview of the different types of databases you
encounter when working with Domino Global WorkBench. We will also
explain the concept of tagging, how the WorkBench fits into the translation
work, and the synchronizer technique.

Domino Global WorkBench Databases
You will encounter several types of databases in Domino Global WorkBench.
They are:

Source Database
A source database is the completed application (or part of it) in the original
language (the reference language). If the developer updates the application,
the source database must be updated by the new version.

Tagged Database
The tagged database is a copy of the source database where all translatable
text and pictures have been exported and replaced with unique tags. This
database is an interim product. It allows you to generate multiple language
databases.

The glossary stores the terms that have been exported from the source
database, together with a reference to the tags that were inserted instead.
The glossary also contains a set of all the terms for each language to be
supported. Translation of the terms can be done using the glossary or the
terms can be exported for translation using another tool and then imported

558 Lotus Domino Release 5.0: A Developer’s Handbook

again. When building a language version, Domino Global WorkBench will
match the tags in the tagged database with the terms for the chosen language
in the glossary.

A glossary can also contain already translated terms. Domino Global
WorkBench can identify these terms in the source database and tag them
with the tags for the existing terms without creating new duplicate terms.

Glossaries can be assigned to a database or a collection of databases. You can
also assign more than one glossary per database.

When working with Domino Global WorkBench, the user can choose to have
information and error messages written to the report database.

The language database is the output from Domino Global WorkBench. The
design elements are taken from the tagged database and the tags are
replaced with the translated terms in the chosen language from the glossary.
The language database can store multiple language versions in the same
database or one database can be created for each language being built.

What is Tagging?
Tagging is the process of replacing a translatable piece of text or image from
an original application with a unique identifier which is called a tag. At the
same time an entry is created in a Glossary that associates the tag with the
text or image it identifies.

When we talk about a piece of text we mean any user visible string that has a
meaning by itself, that is, if you translate it, it still make sense.

New glossary entries are not always created during tagging. The product
builder may choose to use existing terms and tags from a glossary when
tagging an application.

The WorkBench
The WorkBench is the primary tool for the person acting as localization
developer. This is where databases are tagged for translation and where
language databases are defined and built.

The WorkBench has different areas (panes) dedicated to the different types
of databases being worked with. There is also a common area for design
elements in the selected application database where you can select/deselect
for processing, display the properties of specific design elements, and so on.

Chapter 15: Domino Global WorkBench 559

The WorkBench includes panes for:

• Source databases (original application databases)

• Glossary database(s) for the chosen source database

• A tagged database version of the chosen source database

• Language database(s) for the chosen source database

You can optionally also show a log window where messages are written
during processing.

The options available in the WorkBench depend on which kind of databases
you select. For example, if you select a tagged database, Domino Global
WorkBench will display a button to update the corresponding databases.
When going through the example in the next section you will see how the
WorkBench coaches you through the process.

The Project Manager
An application being translated may consist of many databases that need to
be tracked. Furthermore, several applications may be in the process of being
translated at the same time. Domino Global WorkBench has a Project
Manager component to handle this. In the Project Manager you specify
which databases belong to a given project. You can have as many projects as
you want and you can easily switch from one project to another using the
Project pane in Domino Global WorkBench or by going through the menus.

The Standalone Tagger
The standalone Tagger allows you to adjust the tagging in a tagged database
manually, working in the Notes client. In earlier versions of the translation
tools, this tool was called The Populator. You can use the Tagger to manually
tag terms that were missed during the full database tagging process.

Caution The Tagger allows you to change text in the tagged database. Be
aware that if you do this, your tagged database (and the language databases
built from it) will then be out of step with your source database. If you want
to change text in the database, the recommended process is to change it in
the source database and then update the tagged and language databases
using the WorkBench.

560 Lotus Domino Release 5.0: A Developer’s Handbook

The Synchronizer
Domino Global WorkBench also includes synchronization features that help
you set up a workflow process to handle documents to be translated in
existing databases. You can mark each form in an existing language database
in one of three ways:

• Translatable

In the language database(s), any document created from this form will
be copied automatically to other languages and marked for translation.

• Global

In the language database(s), any document created from this form will
be copied automatically to other languages but will not be marked for
translation.

• Local

In the language database(s), any document created from this form will
not be copied to other languages.

A Synchronize agent, run regularly in one of the synchronized databases,
does the necessary copying. It also handles changes to existing synchronized
documents.

You can synchronize between unilingual databases (provided they are to be
held in the same directory) or multilingual databases. If you are using
unilingual databases, you can also choose to build a language Switchbar into
synchronized documents. This allows users to access synchronized
documents in other languages.

Localizing an Application
In this section we will walk through the steps required by the localization
developer to localize a Domino application.

We will refer to the same application throughout the section, but you could
go through the steps using your own application.

The application we will use to illustrate Domino Global WorkBench is one
that our fictitious company, Millennium Entertainment, wants to use to
make information, such as press releases, available to consumers in several
languages through the Web. To accomplish this, Millennium Entertainment
will translate their current English WebNews application into several other
languages. Each language will have its own database for news.

Using a workflow process for approvals, the application will be accessed by
Web browsers and Notes clients before information is released to the Web.

Chapter 15: Domino Global WorkBench 561

The example covers:

• Setting up the project and tagging the database

• Translating the text in the glossary

• Building language databases

Not all Domino Global WorkBench functions will be explained in the
example. Please refer to the Help in Domino Global WorkBench for a more
detailed description of those functions not covered in the example.

Setting up the Project and Tagging the Database
Setting up the project and tagging the source database is work that would
normally be performed by the localization developer of the application. The
output will be a glossary ready for translation into the chosen languages.

Before Launching the WorkBench
Depending on the development process, the first thing the localization
developer should do when he receives an application database for
translation from the developer is to create a synopsis database for it. The
synopsis database is a good tool for checking whether the database has been
properly prepared for translation. For example, design elements without an
alias can be identified, enabling the developer to correct such omissions
before spending time tagging the database.

When the quality of the source database has been assured, it’s time to launch
the WorkBench.

Creating a Project
A new project is created in the WorkBench using the Project Manager.

1. There are several ways to open the Project Manager window. One
method is to select New Project from the File menu on the WorkBench.
This opens the Project Manager window and creates a new project in one
operation:

562 Lotus Domino Release 5.0: A Developer’s Handbook

In this example the project is called Millennium International. In the
Project Manager you can add/remove source databases for a project and
rename or delete a project. The Project Manager also allows you to
organize your projects in folders and subfolders which can be helpful if
you work with several projects at one time.

2. Make this new project the active one in the WorkBench by double
clicking it in the left pane of the Project Manager window. This
minimizes the Project Manager window and focuses on the new (empty)
project in the WorkBench.

The WorkBench looks like this:

Notice the text saying Click Here to add source databases in the pane
below the SmartIcons. The WorkBench ‘coaches’ the user in adding the
necessary databases to the project.

Note For the sake of simplicity, we will assume that all the databases
we specify during this example are stored locally.

3. Click the Source Database pane. A file open dialog appears.

Chapter 15: Domino Global WorkBench 563

4. Specify the filename of the source database. In this example the database
and pathname will be: mei\meinews.nsf. Select the database and then
click OK.

Now the WorkBench looks like this:

You can specify which glossaries to use from the WorkBench, but you cannot
create a new glossary database using the WorkBench, so we will have to
switch to the Notes client to create the glossary.

Creating a New Glossary
1. In the Notes client select File - Database - New.

2. In the New Database dialog, specify that you want to create a database
based on the template DGW 5.0 Glossary. Name the database Millennium
Glossary and give it the filename mei\mei-glos.nsf. We will keep all
databases related to this project in the subdirectory mei in the Domino
data directory.

3. When creating a new glossary database based on the Domino Global
WorkBench 2.0 Glossary template, you will be prompted for the
following information during the creation:

• Description

 Enter Millennium International Project.

• Reference language

Pick the language of the source database from a list. In our example
we selected English (United States).

564 Lotus Domino Release 5.0: A Developer’s Handbook

• Languages to enable

You select which languages you want to enable from the list box.
When a new term is created in the glossary, a copy of it for each
language will be created. However, at this time do not enable the
languages that will be your target languages. This is because you will
add comments to the terms in the reference language after you have
tagged the source database and this should be done before language
copies of the terms are created.

Instead select the language Pseudo.

The glossary gives you the ability to manipulate the terms in Pseudo.
You can reverse all terms or extend all terms in the Pseudo language
with a given percentage (say 30%). You can then build a language
database to quickly identify untranslated text or to see how the user
interface is affected by translations that are longer in the reference
language.

Caution If you have already done translations using Notes Global
Designer R4.6 and you want to use the glossaries you created then, you
must first update the glossaries to the new format for Domino Global
WorkBench. Refer to the Domino Global WorkBench documentation for
a description of how to update the glossaries.

4. Leave the glossary database and go to the WorkBench.

5. Click the glossary pane where it says Click Here To Choose The Glossary
For Millennium Entertainment News and specify the glossary that you
just created. You must also specify whether the glossary is to be used as:

• The Source Database Only

• All Source Databases In This Project

• All New Projects

Chapter 15: Domino Global WorkBench 565

Select All Source Databases In This Project.

6. Notice the Create Tagged Database button. You are now ready to tag
your source database, but in order to capture the messages from the
tagging you will first need to create a report database using the Notes
client.

Creating a Report Database
1. In the Notes client menu, select File - Database - New. In the New

Database dialog, specify that you want to create a database based on the
template DGW 5.0 Report.

2. Name the database Millennium DGW Reports and give it the path and
filename mei\mei-rep.nsf.

3. Switch back to the WorkBench.

Tagging a Database
1. Click the button Create Tagged Database. A dialog box with five sections

appears. The following section will discuss each of these tabs in turn.

2. The first section is called New Database. You must fill out the path and
filename for the tagged database. Enter mei\meinewtg.nsf.

566 Lotus Domino Release 5.0: A Developer’s Handbook

3. Then click the Basics section on the left side of the dialog box. It will look
like this:

4. In Report Options, specify the report database that you just created and
make sure that Automatically Create Report in Database is checked.

5. You can also select what kind of messages should be written to the
report database in the list box named Errors/Warning Level. Select all
items in the list box.

Chapter 15: Domino Global WorkBench 567

6. Click the Lookup icon on the left side of the dialog box to move on.

7. The Glossary Lookup Options are important if you use a glossary that
already contains translated terms and you want to match those terms
with the terms in the source database. You are going to create a glossary
from scratch, so just click the Prompting icon on the left side of the
dialog box to move on.

568 Lotus Domino Release 5.0: A Developer’s Handbook

8. In Prompting, you can decide when you want to be prompted during the
translation process as to what should be tagged.

9. Some of the options are only relevant if you have an existing glossary
that contains terms with language translations. In this example, your
glossary is empty, so select the following options:

• Never Prompt

• Create New Terms

• Automatically for Each New Term

Leave the option Always Prompt When Tagging Formulas checked.

10. The section with Context Matching also refers to glossaries containing
translated terms. You can select options here to make the lookup and
matching of terms more specific. With an empty glossary as in our
example, these options are not relevant.

11. Click the Tagging icon on the left side of the dialog box to move on.

Chapter 15: Domino Global WorkBench 569

12. In the Tagging section, you can decide what you do and don’t want to tag.
In the upper list box you select/deselect whether you want to tag
elements such as formulas, LotusScript, HTML and so on.

Leave the default selections in the list.

Note If you select to have the database title tagged, and you have an
application with several databases, make sure that you understand
enough of the target languages being translated so that you can
distinguish one translated database from another.

Note You can also deselect certain design elements such as a special
form or all agents from being tagged. This is done in the WorkBench.

13. Below the list box with elements to tag there is the Exclusion List. Here
you can specify terms that are not to be tagged. Untagged text will be
copied unchanged to language databases when you build. The wildcard
* (asterisk) represents any text.

14. If you have adopted a system of prefixes for alias names, you can
prevent them from being tagged by entering the prefixes here, followed
by an asterisk. For example, fa_* prevents the tagging of any reference to
aliases that have the prefix fa_. This provides a reliable way of
preventing the tagging of alias names in formulas, LotusScript or
JavaScript.

Our example database uses a simple prefix system where all text that
should not be translated is prefixed by a dot.

For example, a form alias looks like this:
.PressReleaseForm

15. To avoid references to aliases being tagged, you must add a prefix to the
Exclusion List. Click the Add button, and enter this in the prompt that
appears:
.*

16. Click OK and the prefix is now in the exclusion list.

17. Occurrences of the company name should not be translated either. Add
Millennium Entertainment to the exclusion list as well.

18. You are now ready to start tagging. Click OK and enter your password if
prompted.

570 Lotus Domino Release 5.0: A Developer’s Handbook

19. Watch the Tagging window for messages that will appear indicating the
progress of the tagging.

When a formula with text in it is encountered the following will appear:

Here it is a computed field called vwCategories that has the following
formula:
tmpAliasList := ".Rock":".Jazz":".Blues":".Classic":".Pop";
tmpDisplayList := "Rock":"Jazz":"Blues":"Classic":"Pop";
@Replace(Category; tmpAliasList;tmpDisplayList)

There is another field named Category on the form where the user
selects a category from a keywords list. Aliases are used in the keyword
list, so an alias such as .Rock, with the dot prefix, is the actual value of
this category field. However, to display the category in a view, a match
between the alias and its “plain text” representation must be made and
this is what this formula does.

The calculation is done and stored in a field on the document when it is
saved. The calculation could also be placed in a view column, but then it
would affect performance because it would have to be calculated for all
documents every time the view is opened.

Chapter 15: Domino Global WorkBench 571

The strings prefixed with a dot in the formula have been skipped and
the first “plain text” term is selected. If the application developer has
adhered strictly to the convention of prefixing all strings referenced by
code with a dot, you should be able to click Create and Tag every time
you are prompted for a string in a formula. However, in the case of a
candidate string that should not be translated, just press the Skip button.

Note If you accidentally click the Create and Tag button on a term that
should not be translated, you can “repair” this later in the glossary by
marking the term as “Prevent Translation.”

Caution Use only the technique described above for translating
category elements when the element list is static. If you need the
category list to be dynamic you should store it in a profile or setup
document.

20. When the tagging is done, the tagged database will appear in the
WorkBench:

21. You should open the reports database in Notes and check if there any
unusual messages. You can browse all the messages or create reports
with Error Summary or Untranslated Summary.

22. When you have a successfully tagged database, go to the glossary to
mark terms that should not be translated and to prepare the pseudo
translation.

572 Lotus Domino Release 5.0: A Developer’s Handbook

Marking Terms in the Glossary as “Do Not Translate”
Even though you have specified the prefixes used in naming design
elements and other names not to be translated in the tag exclusion list, you
may still encounter terms in the glossary that should not be translated.

For example, you entered the name Millennium Entertainment in the
exclusion list, but it turns out that the name Millennium also appears in the
application and it is now in the glossary as a term. However, you can
prevent the translators from being able to translate it. To do this, open the
glossary. Select the term and click the action button labeled “Prevent
Translation.”

This makes sure that the term remains unaltered in any language version of
the application.

Running Checks Using Pseudo-Translation
Before sending the terms in the glossary off for translation, the localization
developer must check for untranslated terms and potential sizing problems.
The glossary helps you in this by enabling automatic translations of the
terms in the pseudo language. You have two options:

1. Reverse terms allows you to identify untranslated terms in the
application.

2. Expand terms allows you to check for potential sizing problems in the
application.

First check for untranslated terms.

Performing a Reverse Pseudo-Translation
1. Open the Glossary by double-clicking it in the WorkBench if it is not

already open.

2. Click Glossary Management on the main navigator and then click
Pseudo-translate. The Pseudo-translate dialog box will appear:

3. Switch from Expand in the list box to Reverse and click OK.

4. The Pseudo terms are now being reversed as shown in the following
example:
Enter Subject

Chapter 15: Domino Global WorkBench 573

appears in the reverse pseudo translation as
tcejbuS retnE

This means that it will be easy to detect terms that have not been
translated into reverse pseudo.

Note After a term has been pseudo-translated it is marked as translated
and will not be changed in subsequent pseudo-translations.

5. Close the Glossary and go back to the WorkBench to build the language
version of the application in reverse pseudo.

Building the Application in Reverse Pseudo Language
1. In the WorkBench select the tagged database and then select Click Here

To Specify Language Databases. The New Language Database dialog
box appears:

2. Select Pseudo in the Available Languages list box. Drag it over to the
Selected Language(s) list box and drop it under Language Database 1.
Click OK.

3. Press the button in the WorkBench that says Build Language Database.

4. A Language Database Creation dialog box appears. It has three sections.
In the New Database section, specify the location and filename for the
new database. Call it mei\meinewps.nsf.

574 Lotus Domino Release 5.0: A Developer’s Handbook

5. Click Basics on the left side of the dialog box to move to the next section.
It looks like this:

6. Leave Add Flag To The Language Database Icon checked. This option
can be a big help in quickly identifying a certain language version of the
database when working with several languages. Specify that you want
all messages written to the report database by selecting each of them in
the list.

7. Click Build on the left side of the dialog box.

In the Build section you specify whether you want the new language
database to be created as a replica or as a copy of the tagged database.
You can have the ACL from the tagged database copied to the language
database.

8. This is also where you can specify if you want to use the synchronizer
technology that allows for automatic copying of new documents created
in one language database to the other language versions of this database.

Select the following:

• Language Database is A Copy

• Copy The ACL

Chapter 15: Domino Global WorkBench 575

Click OK to start the building of the language database. Enter your
password if prompted. When the building is complete, the WorkBench
will look like this:

9. Check the report database to see if anything unusual has occurred
during the build process.

10. Open the Pseudo language database by double clicking it in the
WorkBench. This is just a quick check to see that the database opens all
right and seems, at a first glance, to be working.

The pseudo language database is now ready to be inspected for terms that
have been missed during tagging or that have been marked as Do Not
Translate in the glossary.

Checking the Reverse Pseudo Application for Untranslated Terms
Basically, the same test case scenarios that the application went through
before being given over to translation should be rerun. All visible design
elements (forms, views, pages, and so on) should be inspected for
untranslated terms.

Here is an example of a form:

576 Lotus Domino Release 5.0: A Developer’s Handbook

This form is OK because the text that is readable was either excluded from
translation (Millennium Entertainment) or it is part of the data in the
document, for example, the subject, name of author, and so on.

Note The order of views, elements in lists, and so on will be juggled
around, For example, if you have these three views in your database:
1. News

2. Approval Status

X. Administration

they will appear in this order in the Pseudo Reverse language database:

noitartsinimdA .X

sutatS lavorppA .2

sweN .1

However, if you have numbered your views, it should be quite easy to
determine which is which.

Handling Untranslated Terms
If you encounter untranslated terms do the following:

If the term has been skipped during tagging you can tag it individually in
the Notes client using the Tagger, or you can Re-build/Update the tagged
database using the WorkBench.

Chapter 15: Domino Global WorkBench 577

If the term has been erroneously marked with Prevent Translation in the
Glossary, go into the glossary and mark it as Allow Translation. Then select
Pseudo-translate using the Reverse option again.

This will reverse only those terms that have been created during the latest
tagging and terms that have been marked Allow Translation. The Pseudo
terms that have already been reversed are marked as translated and will not
be touched by this new Pseudo translation.

As you have made changes to the translations in the glossary you must
rebuild the language database (rather than just update it). In the WorkBench,
select the Pseudo language database and then on the Language Database
menu, select Re-Build Language Database.

Check the language database for untranslated terms again and then move on
to check for sizing problems.

Checking for Size Problems
When translating from the reference language into another language more
space is required for the text. For example, when translating from English to
German, expect up to 30% expansion in the text. To be able to quickly test
how the application looks and behaves in a language that requires more
space for text, use the pseudo translate function in the glossary.

Recreating the Pseudo Terms in the Glossary
Since you already have translated your terms into Reverse Pseudo, we will
not be able to change those terms into Expanded Pseudo language.
Therefore, you need to perform a small “trick” to enable expanded
pseudo-translation: you will have to remove the Pseudo language from the
glossary and then enable it again.

1. Open the Glossary by double-clicking it in the WorkBench. Click
Glossary Management in the main navigator.

2. Click Select/Deselect languages in the navigator. The Available
languages view opens. Scroll down and select the Pseudo document.

3. Then click Deselect. You will be warned that documents for the selected
language will be deleted. Click OK.

4. Now, with Pseudo still selected, click Select and then click OK. New
documents for pseudo are now being created with status as
untranslated.

You can now proceed with the pseudo-translation that expands the terms.

578 Lotus Domino Release 5.0: A Developer’s Handbook

Performing an Expanded Pseudo-Translation
1. Go to Glossary Management in the glossary if you are not already there.

Then, click Pseudo-translate in the navigator.

2. In the Pseudo-translate dialog box accept the default values that specify
expanding the text by 30% by clicking OK.

If there are many terms in the glossary, this may take a little while. Wait
until the Pseudo-translate dialog box disappears before proceeding.

3. Go back to the WorkBench to perform the Expanded Pseudo language
build.

Building the Application in Expanded Pseudo Language
Click the language database that you built when checking for untranslated
terms and select Re-build Language Database from the Language Database
menu on the WorkBench.

Caution Do not select Update Language Database as this will not pick up
the new translations from the glossary.

Checking the Expanded Pseudo Application for Sizing Problems
When checking for untranslated terms repeat the scenario you used to check
the application for any sizing problems.

Note Make sure you use a display resolution that is the same as the one
that the target users will have on their PCs.

Here is one example of a sizing problem using the Notes client where the
translated action buttons are being cut off at the right side of the window.

In the reference language of the example application, the action buttons look
like this:

There is sufficient space for the buttons on the action bar. However, if the
text in all labels is expanded by 30%, the action bar will look like this; the
rightmost button is cut off:

Chapter 15: Domino Global WorkBench 579

With the new option to scroll action buttons in R5.0, the user will not be cut
off from any of the functions, but the idea of giving users instant access to
commonly used functions by action buttons suffers a bit if they have to scroll
to get to the function.

The fairly long labels on each button in this example could be fixed by using
shorter labels and/or noting to the translators to watch out for the length of
their translations. However, for other sizing problems you may have to ask
the developer to change the design, for example, by combining several action
buttons into one cascaded action button.

If you have found any sizing problems that require changes to the source
database, you must update or rebuild your tagged database and the
language database and then check again.

When you can validate that all translatable terms in the application have
been tagged and that no sizing problems seem to exist, the localization
developer can continue preparing the terms in the glossary for the
translators.

Preparing the Glossary for Translation
Before enabling the languages in the glossary that you want to translate your
application into, the following must be done:

• Add comments to terms

• Prevent translation of terms that should not be translated

Note It is important that you add comments to the terms before enabling
other languages because comments added afterwards will not be duplicated
automatically to the language versions of the term.

Often, the translators will not have an intimate knowledge of the application
they are translating or they may not even have access to the application they
are translating. In such situations it is important to add good comments to
the terms in the glossary to explain the context in which the terms are used.

The glossary may also contain terms that should not be translated. Typically
these will be:

• References to aliases in formulas, LotusScript, or JavaScript.

These must not be translated if functionality is to be preserved. Typically
they are references to forms, views, agents, and the like. For example, in
a formula such as @command([ChangeView]; “mainview”) the text
mainview is usually an alias.

In our example we use aliases with the standard dot prefix. We included
this prefix in the WorkBench’s exclusion list when creating the tagged
database so we should not encounter any of these.

580 Lotus Domino Release 5.0: A Developer’s Handbook

• Text strings that never display, and therefore do not need to be
translated.

For example, the names of hidden views, code comments, company
names, and so on.

Names of companies and products that must be the same in all
languages should be entered in the taggers exclusion list. However, once
such a name has been added to the glossary it might be just as easy to
prevent it from being translated in the glossary as it is to rebuild the
tagged database and then delete the name from the glossary.

For code comments, the developer should apply the text style
DO_NOT_TRANSLATE to the comment during translation as this will
keep them from being tagged. However, if code comments have made it
into the glossary, the easiest method is to mark them with Prevent
Translation.

It is a good idea to keep entries in the glossary for these do not translate terms
because you will then not have to think about them again. For example,
when processing a revised version of the database you could leave them
untagged, with no glossary entry, but you would then encounter them again,
as new terms, when you create a tagged database from a new version of the
database.

Enabling Languages in the Glossary
When you have finished adding comments and marking do not translate
terms, it is time to enable the languages that you want your application
translated into.

1. Go to the Glossary Management navigator in the glossary. Click
Select/Deselect Languages in the navigator. The Available Languages
view opens. Select the target languages for the application, for example
Chinese, Danish, French, German, Italian, Portuguese, and Spanish.

Note Most major languages exist in several variants depending on the
country where they are spoken. You should check with your local
experts as to whether you need to create an area/country specific variant
of your language databases. If this is the case, you may want to start out
with enabling one variant of the language and then do the translation to
the other variants based on the first translation for that language.

Chapter 15: Domino Global WorkBench 581

In our example we will perform one translation for each language. For
example, for Portuguese we selected Portuguese (Brazil).

2. When you have selected all the target languages click Select. You will be
warned that documents for the selected languages will be created and it
may take some time. Click OK.

The language terms are now ready for translation.

Translation
When a glossary is ready for translation you can either let the translators do
the translation in the glossary itself (or a replica) or you can export the terms
on a language basis for translation by other tools outside the glossary.

The glossary offers functionality to assist in the translation and review of
translated terms.

Assigning Roles to Translators and Reviewers in the Glossary
If the translation is being done in the glossary database, you must assign
ACL roles to the translators and reviewers to control the level of access that
they are allowed to the glossary database. The roles are:

• Translator

Users assigned as translators can edit and save translation documents,
but they cannot create new terms and they have no access to
management or review functions.

582 Lotus Domino Release 5.0: A Developer’s Handbook

• Approver

Users assigned as approvers have the same rights as translators, but can
also mark translations as approved.

Note Users not assigned to either role have access to all the functions of the
glossary.

Exporting Languages for Translation Using Other Tools
If the translation of a language is to be done using a tool other than the
glossary, you must export it.

1. On either of the main navigators in the glossary, click Export. The Export
dialog box appears:

2. Select the language to export and the export type.

You can export both reference language text and translation language
text, or just the translation language text. Even if you perform the
translation in the glossary you will want to export the translated term for
spell checking.

3. Enter a filename for the exported file.

4. Choose whether to export text from plain text terms or rich text terms.

Export can export text only as plain text, even when it comes from
glossary entries whose format is Rich Text.

5. (Optional) Choose additional information to include in the export:
Translation status, Approval status, and/or Translation description.

Chapter 15: Domino Global WorkBench 583

The following screen shows an example of the first lines in an exported file:

Importing Translated Terms
When a language that has been exported to a file for translation comes back
translated, you must import the translated terms to the glossary.

1. On either of the main navigators in the glossary, click Import. The
Import dialog box appears:

For Import format you can choose between Domino Global WorkBench
format and custom format. Custom format allows you to import terms
stored in almost any format. In this example we will stick to the Domino
Global WorkBench format.

2. Specify the filename and click OK. The translated terms being imported
update the existing language terms documents.

584 Lotus Domino Release 5.0: A Developer’s Handbook

Note Make sure that the character set used by the terms you are importing
is supported by the operating system and the Domino software that you are
running.

All translations should be reviewed. Whether the review is done on the
translated terms in the glossary or on an exported version of the terms
depends on your process for translation.

When all terms for a language have been marked as translated or reviewed,
you are ready to build the application for that language.

Building Language Databases
You build a language version of the application in the same way that you
built the Pseudo language version.

1. In the WorkBench, select the tagged database.

2. Click the drop down arrow next to the pseudo language database name.
You will see the item Add Language as shown below:

3. Click Add Language and a dialog box will be displayed.

4. Select the language that you are ready to build from the Available
Languages list box.

5. Drag it over to the Selected Language(s) list box and drop it under
Language Database 1.

Chapter 15: Domino Global WorkBench 585

If you are ready to build for several languages, repeat step 5. Since you
are creating one database for each language, you must drop each
language under its own database as shown below:

6. Click OK. The drop down list on the WorkBench now has one of the new
language databases selected and you can now build them one by one.
Press the Build Language Database button now visible to the right of the
drop down list.

7. The Language Database Creation dialog box appears. Fill out the
information in the same way as you did when creating the Pseudo
language database, for example, name the Danish version
mei\meinewda.nsf and so on.

Repeat the building of language databases until you have built for all
your translated languages.

586 Lotus Domino Release 5.0: A Developer’s Handbook

The WorkBench will now look like this:

8. Remember to review the report database for any error or warning
messages. Do some preliminary tests in the language versions and then
send them off to the localization validators.

Should the localization validators require any changes to the application or
the translations, you can easily apply the updates to the language versions
using the WorkBench later on. For now, you have completed the basic cycle
of translating a Domino application.

Skipping Terms During Tagging Versus Marking Terms as “Do Not
Translate”

During the example above you have seen that there are several ways to
handle terms that must not be translated:

• Define terms and parts of terms in the tagging options exclusion list.

• Assign the paragraph style DO_NOT_TAG.

• Skip the terms when the tagger prompts as to whether it should be
tagged or not.

• Mark a tagged term in the glossary as “Do Not Translate.”

You should exclude as much as you can using the exclusion list and the
DO_NOT_TAG style.

Chapter 15: Domino Global WorkBench 587

You should allow any non-translatable term that cannot be excluded using
either an exclusion list or the DO_NOT_TAG style to be tagged and then
mark it in the Glossary as “Do Not Translate.” This is because you probably
will have to rebuild or update the tagged database several times during the
initial preparation for translation.

If you are prompted for a term during the tagging process and you select to
skip the term, you will be prompted for that term every time the source
database is tagged. If you put it in the glossary and mark it as “Do Not
Translate,” you will not be prompted for it again.

The Difference Between Updating and Rebuilding
When working with tagged databases or language databases, the
WorkBench displays an update button. However, sometimes you have
to rebuild a database instead of updating it. The following section explains
the difference between the two functions.

Updating a Database
When choosing to update a database, the WorkBench updates only those
design elements that have changed in the database it was derived from. If
the WorkBench detects new untagged text in the updated design, it will tag
it automatically or bring up the tagger window (depending on the tagging
options you have selected).

The update process will not detect changes to the terms in the glossary. If
you need to have new translations included in your language database you
must choose to rebuild it.

Rebuilding a Database
You should choose to rebuild a database instead of updating it when:

• You want to change the selection of elements for tagging or building.

• You want to change the tagging or building options.

• You have made changes to the translations in the glossary(ies).

When you rebuild a database, the WorkBench recreates it entirely from
scratch. If you have made any changes to the design of a tagged database or
a language database being rebuilt, those changes will be lost. In any case,
you should really only change the design in the original database and then
carry the changes forward to the other databases using the update or rebuild
function in the WorkBench.

588 Lotus Domino Release 5.0: A Developer’s Handbook

Preparing Your Database — Tips for Developers
This section of the Domino Global WorkBench chapter explains how to
design and implement a database that will be as simple as possible to localize.
It also discusses what you can do to prepare an existing database for use
with Domino Global WorkBench.

When designing database applications that will be translated for
international environments, keep the following points in mind. If you
pay attention to these, the localization task will be quicker, easier, and
less expensive.

In General

Expansion
You are likely to encounter expansion problems if your working language
(the language in which your database application is developed) is one of
the “shorter” languages, such as English. Translated text can be up to 30%
longer than English, so if you are working in English try to leave space for
expansion when you design forms, views, and so on.

Text expansion often causes problems in tables. Translated tables often have
to be reformatted, and this can be very time-consuming. If you need to use
tables, design them with expansion in mind.

The length of currency symbols varies from country to country. For example,
US and UK currency symbols are single characters ($ and £), but in Italy the
currency symbol is sometimes represented as “Lit.” (five characters). The
size of numbers will vary from country to country. For example, a house
might cost £100,000 (eight characters) in the UK the equivalent in Italy could
be Lit. 200,000,000 (16 characters). In a case like this, you might need to leave
space in your design for a heading such as “All numbers in 000s.”

Note You should also be aware of whether your application is going to be
used in countries that are part of the European Monetary Union. These
countries are replacing their local currency with the common Euro-currency.
It may be a requirement for your application to display amounts in Euro as
well as in the local currency that it is replacing.

Action Buttons
Action buttons are sized dynamically by Domino. If you display several of
them, using close to the full screen width, you may find that after translation
the rightmost one or two will disappear from view.

Chapter 15: Domino Global WorkBench 589

Format
The following are typically different in different countries. On a small scale:
date formats, number formats, and postal codes. On a larger scale: formats of
addresses, formats of letters.

In general Domino is aware of local formats, and so Notes clients in two
different countries may display dates and numbers differently.

Caution Do not store date and time values as strings because their
interpretation depends on the language settings of the particular
workstation.

Even though Domino will handle the format of data in individual fields, you
must also consider formats where several fields are combined. The most
obvious example is the format of addresses. Take a look at the following
figure:

Prof.
Archibald Bennington-Loughly K.B.E.
Managing Director
Marolt Industries (Europe) PLC
Marolt House
24, North Warwick Close
Hanslow
Midhampton-on-the-Blaines
North Suffolk
MH22 E6A
ENGLAND

Tel. +44 18643 279102

3rd November 1998

Fill in the form......

You have an address entry form with a format that can be used by a user
living in the USA. Fields marked with the asterisk * must be filled in. Our
example user (Professor Archibald Bennington-Loughly K.B.E) lives in the
United Kingdom. Try to see how you can map his address information to the
displayed entry form. Some problems that you may encounter could be:

• Where can I specify a title of Professor?

• Which part of the address goes into the Address field and which goes in
the City field?

590 Lotus Domino Release 5.0: A Developer’s Handbook

• State and Area Code are required — but we have no state information or
area code.

• ZIP is restricted to 5 characters — our ZIP requires 7 characters.

• How should the date 3rd November 1998 be entered? As 03/11/98 or
11/03/98?

Even in countries that speak almost the same language, you must consider
address formats.

There are several solutions you can consider:

• Create computed subforms where you include the correct format
depending on information about the user’s country of residence.

You need to make sure that you have the information about the country
before you display the form with the computed subform, and you also
must consider what to do for countries where you have no subform to
include.

• Make sure that all fields required by different formats are available in
the entry form.

This may make the form look cluttered and users may be irritated by
having to go through fields that are not relevant to them.

• Use fewer fields, for example Name, Address, Country, Telephone and
then leave it to the user to enter their data in the format that is correct for
their country.

This will not allow you to structure the data very much. You will, for
example, not be able to list people by zip code.

The approach that you use depends on the application requirements. Do you
need structured input because you need to do some processing on the data
later? Is it very important for you to do input validation on the address, and
so on. Unfortunately, there is no single answer to how address entry forms
should be designed in a multinational environment.

Note Just making sure that you have the fields for all the required data
is not always enough. In Japanese Kanji, a character has multiple
pronunciations depending on the context. A pronunciation may be
spelled by multiple Kanji characters, so for searching and sorting in Japanese
you need to have pronunciation fields in addition to Kanji fields.

Culture
Be careful not to offend your customers. References that are not considered
offensive in your country may be so in other countries. Your users are likely
to be scattered across the world, belonging to many religions and races, and
holding many different beliefs.

Chapter 15: Domino Global WorkBench 591

Examples that make good sense in one country may not be understood at all
in another. An example involving a knowledge of baseball or cricket would
not make sense to many people.

Acronyms
Acronyms can be very convenient when creating an application and are
often used to save space on a form or view. In general they will need to be
translated, like any other piece of text. Bear in mind that:

• There may be no corresponding acronym in the target language so the
text will have to be represented in full.

• Sometimes acronyms have negative connotations in other languages.

• Translators will need to know what the acronym stands for. Add an
explanatory comment in the application itself or, preferably, in the
glossary.

Here are a few examples of familiar acronyms. To an English speaker the
translated versions are not always as recognizable as the acronym itself:

UNO: United Nations Organization

ONU: Organisation des Nations Unis

US: United States

EU: Estados Unidos

Graphics
If you use graphics in your design, try to use international ones. A symbol
that is very familiar in one country (for example, a symbol for the rail
network) may be meaningless in other countries.

Where possible, use graphics without text as they will usually then require
no localization. If graphics need to contain text, do what you can to help
translators:

• Make sure that the source files are available in a format where the text
can easily be translated. It is usually easiest for the translators if the text
is held in a separate “layer.”

• Keep any subsidiary files that may be useful, and make them available
to the translators. For example, if you set up a sample database in order
to make a screen shot of a particular form or view, it will generally be
useful for the translators to have a copy of it.

• Use common fonts for the text, and let the translators know the names of
the fonts and the sizes you have used. If you plan to use an unusual font,
make sure the translators have access to it.

• Allow space for expansion (see above).

592 Lotus Domino Release 5.0: A Developer’s Handbook

Use Aliases
Wherever you can, use aliases. This ensures that displayed text can be
translated without disturbing the functionality of the database. The tagging
function recognizes aliases and does not tag them; it tags only the
displayable text.

In particular, you should alias:

• Form names• Keyword field values (see
Note at the end of this
section)

• View names• Folder names

• Navigator names• Agent names

When referencing design elements in formulas and LotusScript, use the
aliases whenever possible. If, for some reason, you cannot use an alias, make
a note so that localization groups are aware that a name is being used.

There are different ways to handle aliases:

1. Adopt a system of standard prefixes for aliases. Then it will immediately
be clear when a formula is using an alias. For example, you will see
something like this:
SELECT (Form=".New" | Form=".Current")

Here, the dot-prefix ‘.’ is used to indicate an alias. The person tagging
the database will know that pieces of text with the recognized prefix are
aliases and should not be translated, while other references are not
aliases and should be translated.

Using the dot-prefix on all aliases is recommended because strings with
the prefix are immediately recognized as being non-translatable while
maintaining the readability of the code for the developer.

If your development organization already uses a more elaborate naming
standard where aliases for different design elements have different
prefixes, you can stay with that naming standard. Each prefix used for
aliases just needs to be added to the taggers exclusion list.

The important thing is to have a consistent standard and to apply it from
the very start of the development cycle.

2. You can also use numbers as aliases. Normally, where aliases are text
strings rather than numbers, automatic tagging does not tag them.
However, it will tag references to them in formulas (it cannot distinguish
them from other displayable text) unless you use a naming convention
for aliases with a prefix that has been entered in the taggers exclusion
list. The person doing the tagging then has to take some action: either

Chapter 15: Domino Global WorkBench 593

leave the tag in the formula text, but mark the term “Prevent
Translation” in the glossary; or remove the tag.

However, automatic tagging always ignores numbers, so if an alias is a
number, automatic tagging will not tag the alias and it will not tag
references to it in formulas. The translators task is simpler; there are no
tagged references in formulas to consider.

Using numbers as aliases may not always be convenient, but it does help
translators. Consider using them where possible, for example, for
keywords.

3. The last approach is to make aliases exactly the same as the original
text. You may have to choose this option when preparing an existing
application for translation. Formulas will automatically use the alias,
and the original text can safely be tagged for translation. However, there
are one or two drawbacks:

• There will be no visual indication within the formulas that aliases are
being referenced. For example, in the following formula the text
“New” and “Current” could be form names or they could be aliases
of form names:
SELECT (Form="New" | Form="Current")

If everything has been properly aliased, it will be safe for translators
to treat these as aliases, and either not tag them or, preferably, tag
them but mark their glossary entries as “Prevent Translation.” The
only way to be sure whether or not an alias is being used is to check
the form itself.

Note There are cases, for example, in a simple action where a reference
is always to a name, never its alias.

• Each alias will be the same length as the text it is aliasing, and this
may be inconveniently long, for example, when working in formulas.

See the section on Creating Aliases later in this chapter for more information.

Temporary Variables
These do not display and therefore do not need to be tagged. However,
sometimes they will look like displayable text, so it is advisable to use a
standard prefix to distinguish them. For example:

@Set("tmpFullName"; Title + " " + LastName)

You can avoid the tagging of temporary variables by using a prefix like
“tmp” to denote a variable and then adding that prefix to the exclusion list in
the tagger.

594 Lotus Domino Release 5.0: A Developer’s Handbook

Use Formulas Instead of Simple Actions
In Domino Designer, it is often possible to reference other design elements
through a “simple action.” You choose a design element from a drop-down
list. However, the list shows only the element names, not their aliases (if any),
and this can cause problems for Domino Global WorkBench.

It helps if a reference like this:

is changed to one like this:

Note The dot-prefix “.”, seen here, is the one recommended for all design
element aliases.

Hide-When Formulas
Hide-when formulas can be associated with text in a database. When they
evaluate to TRUE, the text does not display. These are held in the same way
as text attributes (they are accessed through the text InfoBox), and they are
preserved by the WorkBench, provided Combine Broken Terms and Rich
Text Sensitive are selected on the Lookup panel in the Tagging Options
dialog box. They are not generally preserved by the manual tagging process.
You should always use aliases in conditional hide/show formulas.

Where you use them, make a note of them and inform the localization team.

Exclude Paragraphs From Translation Using the DO_NOT_TAG Style
If there are paragraphs in your database that you know will never need to be
translated, for example, comments about the design, you can make Domino
Global WorkBench ignore them by giving them a paragraph style called
DO_NOT_TAG. You can define the style in any way you like; it is the name
of the style that the WorkBench looks for.

Chapter 15: Domino Global WorkBench 595

To assign the DO_NOT_TAG style:

1. Open a design document that contains text you want to exclude from
translation.

2. Put the cursor in the section of text, right-click and choose Text
Properties.

3. In the InfoBox, click the Styles tab.

4. Click Create Style.

5. Enter DO_NOT_TAG, and check Make Style Available for All
Documents.

6. Click OK.

7. Put the cursor in the next section of text you want to exclude from
translation, and select DO_NOT_TAG in the InfoBox.

8. Repeat Step 7 for other text that is to be excluded from translation.

There are other ways of excluding text from translation once the database
has been designed. See Text that must not (or need not) be translated.

Avoid Shared/Personal on First Use Folders or Views
These are hard to localize. If you do use them in an application that will be
multilingual, they may have to be left untranslated.

When a user opens a shared/personal on first use folder or view for the first
time, Domino creates a private folder or view with the same name (which
the user can customize) and hides the public one. If the name of the public
folder or view changes for any reason, for example by translation, Domino
will no longer be able to locate the original private version and will display
the public one again. This will create a new private copy when opened.

Concatenated Sentences
Avoid constructing sentences using formulas such as:

"Today is "+@weekday(@today)+" "+@month(@today)+"
"+@day(@today)+" "+@year(@today)

The length of this will vary according to the local language and setup, and in
many languages the order of the elements will be different (so the translators
would have to change the formula, not just translate the text). In this
example you could use a simpler format:

TodaysDateDate:

596 Lotus Domino Release 5.0: A Developer’s Handbook

where TodaysDate is a time field calculated using the formula @Today.
Avoid doing the same sort of thing with fields, for example:

 CustomerforDateonAuthorCreated by

Translating a sentence like this may involve changing the order of the fields,
and that means additional work and may introduce errors. A simpler format
would be:

CustomerCustomer:

DateCreation date:

AuthorCreated by:

Use @ReplaceSubstring to Construct Sentences with Variables
If you cannot use a format as suggested above because of space restrictions,
layout guidelines or some other reason, you should construct the
concatenated sentence using temporary variables and the @ReplaceSubstring
function.

Look at this example. Instead of writing:

tmpFirstLine := Subject + " by " + @Name([CN];From);

where the translator just gets the string “ by “ to translate, you should use
this approach:

tmpSourceText := "%Subject% by %Author%";
tmpAuthor := @Name([CN];From);
tmpFirstLine := @ReplaceSubstring(tmpSourceText;
"%Subject%":"%Author%"; Subject:tmpAuthor);

In addition to using temporary variables with the “tmp” prefix, an
application may also use sentence variables that have the character “%”
before and after them. In the arguments to @ReplaceSubstring, you first
specify the string with the source sentence where sentence variables are
placeholders for outside values (referenced by tmpSourceText). Next, you
specify a list with all the sentence variables used (%Subject%:%Author%)
and as the last argument, you enter a list with the real values to be
substituted into the source sentence (Subject:tmpAuthor).

The translator gets the string “%Subject% by %Author%” to translate. The
translator will be able to see the context in which the word “by” is to be
translated and will also have the freedom to change the construction of the
sentence, for example, by putting the name of the author first in the sentence.

The translator must be informed that words with a prefix and postfix of, for
example, “%” are sentence variables and must not be translated, but can be
moved at will in sentences.

Chapter 15: Domino Global WorkBench 597

You should not put the prefix for these sentence variables in the taggers
exclusion list because this also will exclude concatenated sentences starting
with a sentence variable (as in the example above) from being tagged.

Handling Translatable Lists
If your application contains lists that the user or administrator should be
able to update dynamically, you must store them in a profile or setup
document. Leave only lists that will remain static within the application to be
translated.

When a text list is tagged for translation, each value is entered in the
glossary as an individual term. You must make sure to comment the terms
so that the translator knows which terms belong to the same list.

An alternate way to handle translatable lists is to store them as one string
and then split that string up into the different list elements at runtime using
@Explode. Here is an example of how to do this:

tmpDisplayList := "Rock#Jazz#Blues#Classic#Pop";
@Explode(tmpDisplayList; "#")

In this example a text list is stored as one string where each list element is
separated using the character #. The output from this formula is the text list:

"Rock":"Jazz":"Blues":"Classic":"Pop"

However, when tagging the database only one term is entered in the
glossary:

"Rock#Jazz#Blues#Classic#Pop"

Thus the developer will be able to see which elements belong to the same
list.

Caution The developers must be instructed not to touch the separator
character in the list because an accidentally deleted separator will
concatenate two list elements into one and change the working of the
application. If using concatenated lists, the localization developer should
check them carefully when returned from translation before building the
application.

Keywords

Keep Them Simple
If you use keyword fields, try to keep the keywords simple. They are
difficult to translate because field name text is tagged separately from the
keyword values, so they end up as separate glossary entries. The translator
sees several, apparently unconnected, pieces of text (although there will be

598 Lotus Domino Release 5.0: A Developer’s Handbook

some context information to help). In many languages there may need to be
grammatical agreement between them.

For example, the field:

Updated/Not
updated

Schedule status:

will be harder to translate than:

Yes/NoSchedule
updated?

Using Formulas for Keywords
If you can, avoid entering keywords using a formula. Instead, use the static
items option “Enter choices (one per line)” in the keyword field InfoBox.
Automatic tagging will correctly tag keywords, provided that they are static
and aliased. However, it will not tag them correctly in formulas, unless they
are named with a prefix that has been entered into the taggers exclusion list.

Displaying in Views
If you want a view to display a keyword field do not refer to the keyword
field directly, because that will display aliases, not the keywords, and aliases
are not tagged or translated. Instead use the Formula option:

Here, a keyword field named Status has the following keywords and aliases:

Completed | .Completed
Active | .Active

The dot prefix “.” has been used to denote a keyword alias. With “.*” entered
in the taggers exclusion list, only the values “Completed” and “Active” will
be tagged for translation.

Caution Using formulas in view columns instead of referencing fields may
affect view performance. As an alternative in single language databases, you
can reference a hidden computed field in your form where you enter a
formula that computes the text to display in the view. For example, you can
have a hidden computed field called vwCategory with the following
formula:

Chapter 15: Domino Global WorkBench 599

tmpAliasList := ".Rock":".Jazz":".Blues":".Classic":".Pop";
tmpDisplayList := "Rock":"Jazz":"Blues":"Classic":"Pop";
@Replace(Category; tmpAliasList;tmpDisplayList)

If the field Category contains the text list “.Rock”:“.Blues” then the field
vwCategory will contain “Rock”:“Blues”.

However, if you update the keywords field Category using an agent, take
care to update the hidden computed field vwCategory as well.

Note If your application will be multilingual, you have to do the calculation
of which text string to display ‘on the fly’ using view column formulas.

Numbers as Aliases
You may want to consider using numbers as aliases for keywords. However,
it may be more difficult to maintain code where numbers are used as aliases.

Fonts
When designing a database, check that the fonts you use:

• Are available to the people who will be using your database. When the
Notes client encounters an unknown font it uses a suitable alternative,
but this may have an adverse affect on the layout and/or readability of
your application.

• Contain all the characters needed for the languages you will be
translating into. If a character, for example an accented character, is not
available in a font, an unknown character symbol (a vertical bar) will
display instead.

For example, Japanese characters will usually display as unknown characters
in European environments. This is not a data corruption problem; the Notes
client keeps your data secure and will display it properly wherever it can.

Pay Attention to Length Limitations
Domino R5.0 has certain limitations on the length of particular sections of
text. This means that if the translated version of a section of text exceeds the
allowed length, there will be a truncation in the built database (in that
language). Keep text for these items (especially navigator button captions) as
short as you can.

Maximum Lengths
Database Title: 32 characters

Navigator Button Caption: 31 characters

View Title: 64 characters*

View Column Headings: 80 characters

600 Lotus Domino Release 5.0: A Developer’s Handbook

View Comment: 255 characters

Form Title: 64 characters

Field Help: 255 characters

Folder Title: 80 characters

Folder Column Headings: 80 characters

Folder Comment: 255 characters

SubForm Title: 64 characters

Navigator Title: 64 characters

* For multilingual applications, the total length of translated cascaded view
titles must not exceed 66 characters (including the backslash). If this limit is
exceeded, the application may crash without warning for any view accessed
by db.getview() that follows after the view in question (including the view in
question). For non-cascaded view titles, the total length may not exceed 63
characters. Longer view titles will be truncated to 63 characters with the
usual warning in the report database.

LotusScript
Domino Global WorkBench 5.0 recognizes and tags LotusScript. It tags all
text it finds between standard string delimiters with the exception of text
that is part of the LotusScript language. Standard delimiters are double
quotes ("), vertical bars (|) and braces ({ }).

If you use standard alias prefixes as recommended above, you can make the
WorkBench ignore references to them in LotusScript automatically.
However, there may be other references that must not be tagged, such as file
names. Usually the simplest way to handle these is to let the WorkBench tag
them, but mark them “Prevent Translation” in the glossary.

To help the translators, put all the text in one place and store it in the
database or template as a script library.

Chapter 15: Domino Global WorkBench 601

In the following example, a function GetString is used to store text. Each text
string has been given an explanatory comment (the text beginning with a
single quote) by the database designer, which is very helpful for translators.

Keep Translators Informed
If there are elements of your design that are never displayed and also are not
referenced by any displayed text that requires translation, like temporary
variables used in constructing sentences, inform the translators.

Note Text that need not (or must not) be translated, is usually tagged
anyway, but marked Prevent Translation in the glossary. This ensures that it
will always be recognized, and always treated as text to exclude from
translation. It could be left untagged, but then when an updated version of
the database is autotagged, it would not be found and would be presented
to the person doing the tagging as new text.

If the functionality of your database depends on any pieces of text that are
not aliased (for example, file names or simple action references), inform the
translators. Special precautions will need to be taken when tagging these,
and some of them may have to be kept in the original language. Use REM
statements in formulas to indicate such references. It will also help
translators if you include REMs to explain the function of more complex
formulas.

If you have used hide-when formulas in your design where translatable text
is referenced, tell the translators where they are.

602 Lotus Domino Release 5.0: A Developer’s Handbook

Preparing an Existing Database
This section explains what you can do to prepare an application that has
already been developed and now needs to be localized.

Make a Backup
First make a backup replica of the database. You can do this by either:

• Using the DOS copy command to copy the .NSF file.

• Selecting File - Replication - New Replica.

Caution Do not use the File - Database - New copy command. This creates
a copy, but it has a different replica ID and therefore cannot replicate with
the original database or any of its existing replicas.

Create a Design Synopsis
Create and print a design synopsis. This will list the database’s design
elements and the text they contain. You can use this to identify and mark
design elements that might need changing:

• If you are able to change the design of the database, consider making
changes along the lines suggested in the guidelines above.

• If you are not able to change the design of the database, you should at
least make sure that all views, forms, and navigators are aliased.

Note Keep the design synopsis. You can use it to identify the pieces of text
in the database that need to be tagged.

The procedure is:

1. Open the database in Domino Designer if it is not already in the most
recently used list.

2. Expand the database in Domino Designer’s most recently used list so
you can see all the different types of design elements.

Chapter 15: Domino Global WorkBench 603

3. Click the element named Synopsis. The following dialog box appears:

4. In the Design Synopsis dialog box, you can specify which parts of the
database and how much information per part you want the synopsis
to describe.

5. On the last tab of the Design Synopsis dialog box, you can specify to
have the synopsis written to a database for later referral or shown
directly in a window.

6. Print the synopsis — either from the window it is displayed in or from
the database. Since it can be long, you may want to review it in
electronic form (and maybe reduce the font size) before printing.

You should now mark on the design synopsis:

• Any cases where a design element has an alias, but a reference to it (for
example in a formula) is using its display name, not the alias. In such
cases you must either:

• Change the reference to point to the alias, or

• Make sure the design element name is not translated.

• Any of the following that have not been aliased:

• Form names

• Folder names

• View names

• Field keyword values, defaults, input validation and translation
values

• Navigator names

604 Lotus Domino Release 5.0: A Developer’s Handbook

If an item has been aliased, you will either see an entry in an Alias field:

or you will see one or more vertical bars in the name:

7. Now create any missing aliases. To assign an alias to various types of
design elements, refer to the description of the individual elements in
this book.

Chapter 15: Domino Global WorkBench 605

Summary
Domino Global WorkBench is part of Domino Designer R5.0. It enables you
to translate your application into several languages. You can either have one
language per database, or combine several languages in the same database
and then let the user decide which language to use. Domino Global
WorkBench also includes technology to synchronize the translation of
database content among several languages.

Extra care must be taken when designing applications for an international
audience. Avoid hard coding of strings to be translated, be careful with
string length limits in titles, and so on. Issues like how to format an address
should also be considered.

606 Lotus Domino Release 5.0: A Developer’s Handbook

This chapter describes one of the most powerful, yet surprisingly simple,
features of Domino, workflow. We will cover the basics of what workflow is
and why you would want to use it in your applications, and some of the key
tasks of designing a Domino workflow application, and we’ll take a detailed
look at the Approval Cycle template provided with Domino.

Note The Approval Cycle template used in this chapter is from the Domino
R4 template; the R5.0 design had not been finalized. Also, in the R4 template
we used, the ability to mail the entire workflow document to the next approver,
rather than send a doclink to it, had been removed. Therefore, this document
only uses the doclink routing method.

What is Workflow?
Workflow is best described using a paper-based environment. Take a simple
order form for some goods as an example. Initially, the order form must be
be filled in by the customer requesting the goods. This form is then sent to
the company where it is received into the sales department. A salesperson
may check that the order is valid and then pass it over to the credit control
department to check whether the customer is able to pay for the goods.
If the credit control department agrees, the order is routed to the warehouse,
where the requested goods are checked against stock levels and then sent out
to the customer. When the customer receives the goods, they send the money
to pay for them.

In the above process, the order form has been passed from customer to
department to another department and then back to the customer. At any
point, any of the departments could have rejected the order form for one
reason or another and the order would not have been processed.

What we have just described is a workflow process: a piece of paper being
moved around a defined process that has a ‘status’ associated with it at each
point in that process. For example, at the beginning, the order form is a new
order; as it is passed through the departments it is in a pending authorization
status; through to delivered, awaiting payment, and completed. At any time the
form could enter a status of rejected and then would not travel any further
through the process.

Chapter 16
Domino Workflow

607

Using Domino, it is fairly straightforward to create an application that copies
this paper-based process. You can create a form that looks almost exactly the
same as the paper-based form, you can define the route that the form must
take through each of the departments, and you can define the ‘status’ for the
form at any one time.

The advantages of using Domino for workflow over a paper-based system
are enormous. Not only can you reduce the amount of paper that is used in
an office but you can speed up the authorization process. You can remind
people if a document is overdue for authorization, you can create tailored
views so that each department only sees the documents that relate to them,
and you can add privacy and security to the documents.

Workflow Design Considerations
Before jumping in and developing a workflow application, it is extremely
important to make sure that you have a good understanding of the entire
workflow process, from beginning to end.

Ensure that you visit each department involved in the process and fully
understand the procedure that they follow to complete a particular
operation. This also includes what happens if the form is rejected, if a piece
of information is missing, or if the form needs to be passed back a step to the
previous department. There are usually some obvious steps in the process
that are easy to find; make sure that you question each department
thoroughly and find the steps that are not so obvious.

At the end of the discussions with each department, you should at least
have a list of all the items of information that they require to move the form
onto the next stage, where the information comes from, and the order in
which the form must travel through each of the departments.

Creating a Database Using the Approval Cycle Template
Domino R5.0 provides many database templates that can be used to create
Domino databases, one of which is the Approval Cycle Template. This
template contains some excellent workflow features that are very easy to
incorporate into an application and make it possible to have a complex
workflow application working in a very short period of time.

608 Lotus Domino Release 5.0: A Developer’s Handbook

To create a database using the template, follow these steps:

1. Select File - Database - New from the menu.

2. The New Database dialog box is displayed. Select the server where your
database is to be created and enter a database title and file name.

3. Select the Approval Cycle template from the list and click OK.

Note If the Approval Cycle template is not displayed, change the
template server from local to that of a Domino server to which you have
access to by clicking Template Server.

4. Open Domino Designer by choosing View - Design from the menu.

5. Create a new form in the database by clicking the New Form action
button.

6. You will see the following dialog box, select the ApprovalLogic subform
and click OK. This subform contains all the workflow logic needed for
your application.

7. The form design is displayed in Domino Designer with the ApprovalLogic
subform inserted.

Tip As the subform takes up quite a lot of space on the screen, create a
collapsible section from the subform. Select the whole subform with the
mouse, and choose Create - Section - Standard from the menu. Add a
title by choosing Section - Section Properties from the menu bar to
display the InfoBox, and add your own title.

8. Add your own fields for your workflow application under the
ApprovalLogic subform and save the form. Following is an example
of a workflow form. The first example shows the subform section
expanded and the second shows the section collapsed.

Chapter 16: Domino Workflow 609

610 Lotus Domino Release 5.0: A Developer’s Handbook

9. After creating your form, the next step is to create an Application Profile.
In Domino, select the Application Profiles view and click Create
Application Profile. The application profile document is displayed:

10. In the Basics section, enter the name of the form you just created; this
can be either the full name or the form alias.

Note This must be exactly the same name as the form name.

11. If your workflow document needs to be authorized in an escalated
process, select One After The Other from the Routing Type keyword
field, or if the document can be authorized by many people at once,
select the All At Once option. An escalated process is one where, for
example, a customer requests a credit amount above their limit, so the
form is routed to a different sub-process for approval before returning
to the original process.

12. In the Approval List section, specify the number of approvers. The range
is from 1 to 5. In our example we are using just one approver and the list
is not editable.

Chapter 16: Domino Workflow 611

13. Click the button for each of the approvers to display the Approver dialog
box. It looks like this:

14. Click the arrow next to the source name to display the available choices.
The choices are as follows:

• Defined in this profile

• Entered on the form by the submitter

• Retrieved from a database

This last option gives you the ability to create your own list of approver
names from another database. If you use this option, make sure that the
names are valid Notes names, as they will need to be sent in an e-mail.

In our example, we have left the option as Defined in this Profile and
selected a name from the Public Address Book.

15. Select the appropriate title for the approvers in the Approver Function field.

16. In the Approval Window field, specify how long the approver can take
to handle the approval request.

17. In the If Window is Missed field, specify the action to be taken when the
approval window has passed.

18. Click OK to return to the Application Profile form.

19. In the Options section, you may modify the terminology used for each
stage of the approval cycle.

Note You must have exactly the same number of stages as the form
displays and they must correspond to the terms on the left.

20. Click the Close button and save the new document.

612 Lotus Domino Release 5.0: A Developer’s Handbook

Using the Workflow Document
1. To use the new workflow document, select the All Request view from the

view list and click Create New Request.

2. The New Request dialog box is displayed. Select your workflow form
from the list and click OK.

Note The form names are taken from the Approval Form Name field
of the Application Profile.

3. Complete the fields in the form and when you are ready, click Submit
for Approval.

The following message is displayed, notifying you that an e-mail has
been sent to the first approver.

4. Click OK to close the message box. You can now see the new request in
the view with the current status Awaiting Approval. It looks like this:

Working With the Request
Assuming the role of Manager, you can now open your mailbox and process
the request.

1. Open your mailbox.

Chapter 16: Domino Workflow 613

2. You can see new mail listed in the Inbox view. This is how the view
looks when new approval requests arrive:

3. Open the mail item to display the approval document.

To open the approval request, click the document link icon above the red
arrow. The approval document will open.

614 Lotus Domino Release 5.0: A Developer’s Handbook

4. If you are the next approver for this document you will see two action
buttons at the top of the screen marked Approve and Deny:

Clicking on either of these buttons displays the Comments dialog box,
where you can enter any comments you may have or reasons why you
are rejecting a request. When you close the Comments dialog box by
clicking OK, an e-mail is sent, either to the next approver or back to the
originator of the request if you are the last approver.

Approval Cycle Database: Design
The following section explains the design of the Approval Cycle database.

How Does a Form Flow?
The following figure shows the Doclink type of form flow, which involves
three users.

DocLinkDocLink

 Requester

Deny

Submit Approve

Accountant

Notify by mail with DocLink

Approve or Deny

Manager

Approval DB

Approval
Request

Mail Flow

Document
Reference

All the notifications to process a flow are sent by e-mail containing a document
link to an approval request document located in the Approval Cycle database.
The approvers can see the same document submitted by a requester for
processing. Only the current approver can take an action (Approve or Deny)
to deal with the request. The network path, server access authorization, and
appropriate database access controls are needed to share the same database
for the workflow.

How Is the Approval Cycle Database Organized?

Relationship Between Forms
The Approval Cycle template has two forms:

• Application Profile Form

• ApprovalLogic Subform

Chapter 16: Domino Workflow 615

It is recommended that you create at least one document and one other form
to use this template.

An Application Profile document must be based on the Application Profile
form and it must describe the workflow properties and specify an Approval
form. The Approval form must include the ApprovalLogic subform and
your workflow contents, for example, an Order Form.

An Approval Request document is created from the Approval form every
time you start a workflow request. Approval status information is shown
in the Approval Request document.

The following figure shows the relationship between the forms:

Create
Document

Reference

Application Profile
Form

Application Profile
Document

Approval
Form

Travel Expense Account
Subform

ApprovalLogic
Subform

Approval Request
Document

Request Flowing

Procedure Calling Sequence and Event Handling
Approval Request Form
An Approval Request form consists of two design elements:

• ApprovalLogic subform

• The form you design to contain your own specific fields

The main workflow form contains some Notes agents, but no LotusScript
programs. The ApprovalLogic subform contains a large number of
LotusScript programs and many Domino macros, which control the
approval request workflow.

Note When you add procedures or modify scripts, be careful to avoid
conflicts of variables between global variables and implicit variables used
in the ApprovalLogic subform.

Tip If you write LotusScript programs, you should use Option Declare,
user-defined classes, and user-defined data types to make the programs
clear and safe.

616 Lotus Domino Release 5.0: A Developer’s Handbook

When you create the Approval Request document, the form events defined
in the ApprovalLogic subform are inherited into the main form. The picture
below shows which events are used and the sequence in which they are
triggered.

Eclipses displayed in gray are not performed because there are no scripts
defined for them.

Note You can use the Domino debugger to see some of the sequences of
real-time events. You will not be able to debug the LotusScript code that
is executed via the @Function language. For example, you will not be able
to debug the Approve and Deny action buttons as they start by executing
commands in the formula language. For more information on the debugger,
see Chapter 10: Programming for Domino.

Application Profile Form
The Application Profile form contains some event handlers, which are
included in forms, fields, and buttons. The Exiting event is performed when

Chapter 16: Domino Workflow 617

you try to move the cursor from the Approval form name field to another
field, as shown in the following figure:

Postopen
Postmodechange
Querysave
Queryclose

Click

Exiting

GetApproverDetailsGlobals

You cannot move the cursor without typing a name, because the Exiting
event handler checks the field contents. The Approver button has a Click
event handler which is called by a mouse click trigger. The handler calls
the global routine GetApproverDetails, which displays a dialog box created
by a layout region in the (Approverinfo) form.

The following picture shows an event sequence which occurs when you
create the Application Profile document:

618 Lotus Domino Release 5.0: A Developer’s Handbook

Eclipses shown in gray are not performed, because there is no program
defined for them.

You can use the Domino debugger to see the sequence of real-time events.
For more information on the debugger, see Chapter 10: Programming for
Domino.

Approval Cycle Database: Agent
The approval application requires an agent to deal with the due date expiration
in this example. When the due date has passed and the approver has not
taken any action, the agent processes the approval request depending on the
criteria specified in the application profile for the due date.

A Closer Look at the ApprovalLogic Subform
The following section explains how the ApprovalLogic subform works and
shows you some of the techniques that you can use in designing your own
workflow applications.

We assume here that you have already created your workflow form and have
set up an Application Profile document for it.

Note The LotusScript that follows may not look exactly the same as that in
the template, as it has been formatted for better clarity.

Chapter 16: Domino Workflow 619

The Major Fields
The ApprovalLogic subform uses many variables to perform its operation,
but there are a few that require particular attention:

Controls which action button (submit, approve,
deny) the current user has clicked and performs the
appropriate functions. This field is not displayed on
the form, but created via the action buttons.

TextAction

Contains the current status of the workflow
document as designated in the Application Profile
document.

TextStatus

Contains the name of the next approver in the
workflow process.

TextNextApprover

Controls who currently has the ability to edit the
document. This is modified in the QuerySave form
event and changed from the original author to the
next approver, and finally to the form
administrator.

AuthorsAuthorizedEditors

DescriptionField TypeField Name

Creating a New Request
1. To create a new request, the user clicks Create New Request in the

All Requests view. This does three things:

• It builds a list of available Application Profiles from the
ApplicationProfiles view and displays them in a dialog box where
the user can make selections.

• It sets an environment variable, DocType, to the value of the selected
document.

• It composes the selected document.
tList := @DbColumn(""; ""; "ApplicationProfiles"; 1);
List := @If(@IsError(tList); @Return(@Prompt([OK]; _
"Error"; "An error has occurred. Please try again.")); _
tList);
ENVIRONMENT DocType := @Prompt([OKCANCELLIST]; "New _
Request"; "Choose one of the following:"; @Subset(List; _
1); List);
@PostedCommand([Compose]; DocType)

2. When the new workflow document is being created, the LotusScript
PostOpen event is triggered. This code first checks to see if the new
document was created via the Create New Request action button by
checking the value of the environment variable DocType. If the
environment variable does not exist or is blank, then the user is not
allowed to proceed.

620 Lotus Domino Release 5.0: A Developer’s Handbook

If source.IsNewDoc Then
DocType = s.GetEnvironmentString("DocType")
Call s.SetEnvironmentVar("DocType", "None")
If DocType = "None" Or Isempty(DocType) Then

Messagebox "This Document must be created via"
 "the Create New Request action."_

& " Please remove it from the Create Menus.", 0,_
 "Error"

Continue = False
source.Close
Exit Sub

End If

3. Still within the PostOpen event of the form, LotusScript then finds the
selected Application Profile document and copies all the fields into the
new document being created. If the profile document cannot be found,
the user is informed and is not allowed to continue.

Set view = db.GetView("Application Profiles")\
Set profile = view.GetDocumentByKey(DocType,False)

If profile Is Nothing Then
Messagebox "This application will not execute"&_

"correctly without an application profile.",
0 + 64, "Design Error"

doc.close
Print
Exit Sub

Else
profile.RemoveItem("Form")
Call profile.CopyAllitems(note)

End If
FormAdmin = note.FormAdmin
If FormAdmin(0) = "" Then note.FormAdmin = db.Managers
note.RequesterName = s.CommonUserName

End If

Note The form name is removed from the Application Profile document
before the fields are copied into the new document. If this was not done,
the new document would open using the Application Profile form rather
than the correct workflow form. Although the form field is removed
from the Application Profile document, it is not actually deleted, as the
document is not saved.

4. When a new document is being created, the subroutine InitializeNewDoc()
is called from the forms PostOpen event to set up the following approver
fields: Approver Names (only if not defined on the Application Profile),
Status, Approval Dates, and Comments.

5. If the list of approvers has been defined in the Application Profile as
being stored in another database, the GetApproverNames() LotusScript

Chapter 16: Domino Workflow 621

function is executed to retrieve the list of names from the database and
the view specified in the Application Profile.

Note All the fields have been updated in the back-end document,
rather than the UIDocument.

6. At the end of the PostOpen event, the fields in the UI document are
reloaded from the back-end database and then refreshed to reset the
hide-when formulas and computed fields.
source.Reload
source.Refresh

7. When the document is refreshed, the PostRecalc event for the form is
triggered. This event checks whether the current user is trying to edit
the approver list and, if not, exits.

8. The new document is then displayed for the user to complete as required.

In summary, when a new workflow document is created, the PostOpen form
event validates whether the request was generated from the Create New
Request action button by using environment variables. The Application
Profile document is located and its fields copied into the new document, and
the list of approver fields is updated.

Submitting a New Form for Approval
1. When a new workflow document is completed as required, the user

clicks Submit for Approval. This performs the following functions.

• It checks to see if the field ApprName contains the value “Entered
when Submitted.” This value is copied from the Application Profile
document and indicates that the user has not selected the list of
people to send this document to for approval. If they have not made
the selection, then an error message is displayed, and they are
required to return to the document and enter the approvers’ names.

• The action button sets the value of the field Action to the value Submit.
The field SaveOptions is then set to the value “1” to force the
document to be saved and not display the “Do you want to Save this
Document” dialog box to the user.

• The document is then saved and closed.
@If(@Contains(ApprName; "Entered when submitted");
@Return(@Prompt([OK]; PromptTitle; "Please use the \"Edit
Approver List\" button to enter a valid approver
name.")); "");
FIELD Action := "Submit";
FIELD SaveOptions := "1";
@PostedCommand([FileSave]);
@PostedCommand([FileCloseWindow])

622 Lotus Domino Release 5.0: A Developer’s Handbook

2. Before the document is closed, the QuerySave() form event is triggered
by the @PostedCommand([FileSave]) function from the action button.

• This function first sets the global variable DocWasSaved to true so
that the QueryClose event knows to remove some fields.

• It is possible that the user simply wanted to save the document rather
than submit it for approval, so a check is made to see if the document
was saved via the Submit for Approval action button by testing
whether the document contains the Action field:
If Not note.HasItem("Action") Then Exit Sub

• Next, the IdentifyUser() subroutine is called to rebuild the list of
remaining approvers by identifying those approvers that still have a
status of none.

• Using a case statement, the QuerySave event then checks to see which
action button the user clicked (Submit, Approve, or Deny) by testing
the value of the field Action:
Select Case Action(0)
Case "Submit"

If (Status(0) = StatusList(4)) Or (Status(0) = _
StatusList(5)) Then

For n = 1 To 5
note.RemoveItem("ApprStatus")
note.RemoveItem("ApprDate")
note.RemoveItem("ApprComment")

Next
End If
note.RequestDate = dt.LSLocalTime
note.Status = StatusList(2)
SetNextApprover
SetDueDate
SendNotification

• If the action is Submit, the function SetNextApprover() is called to
identify the next approver. This subroutine checks to see which
routing method has been defined (either Serial or Parallel) and sets
the next approver to the first person in the array built from the
IdentifyUser() subroutine:
Select Case RoutingMethod(0)
'If RoutingMethod is serial then NextApprover is simply
'the next in the list
Case "Serial"

If NextAppr > Ubound(ApprName) Then
'StatusQualifier is only used while the approval cycle is
'active

note.RemoveItem("StatusQualifier")
LastApprover = True

Chapter 16: Domino Workflow 623

Else
NextApprover = ApprName(NextAppr)
note.NextApprover = NextApprover
note.StatusQualifier = "by " & NextApprover

End If
Case "Parallel"

Select Case Action(0)
'If submitting - the next approver is all approvers

Case "Submit"
note.NextApprover = ApproverList

'If Approving - remove CurrentUser from the ApproverList
'and reset NextApprover to the new list

Case "Approve"
ListMax = Ubound(ApproverList)
Redim tmpList(ListMax)
x = 0
For y = 0 To ListMax

If ApproverList(y) <> CurrentUser Then
 tmpList(x) = ApproverList(y)
 x = x + 1
End If

Next
If x = 0 Then

tmpList(x) = "None"
LastApprover = True

End If
note.NextApprover = tmpList

End Select
End Select

• The subroutine SetDueDate() is called next to set the due dates by
which the approver(s) must authorize the document. For a parallel
workflow document all the due dates for each of the remaining
authorizers are set, and for a serial workflow document, only the next
approver’s due date is set:
Select Case RoutingMethod(0)
'If Parallel - adjust all dates
Case "Parallel"

For n = 0 To ListMax
Adjustment = ApprWin(n)
dt.AdjustDay(Int(Adjustment))
tmpList(n) = dt.LSLocalTime
dt.SetNow

Next
'If Serial - only adjust the date for the Next Approver
Case "Serial"

DueDate = note.DueDate
Redim tmpList(NextAppr)
x = 0

624 Lotus Domino Release 5.0: A Developer’s Handbook

Forall d In DueDate
tmpList(x) = d

If (tmpList(x) = "") Then
tmpList(x) = dt.LSLocalTime

End If

x = x + 1
End Forall
Adjustment = ApprWin(NextAppr)
dt.AdjustDay(Int(Adjustment))
tmpList(NextAppr) = dt.LSLocalTime

End Select
note.DueDate = tmpList

• The SendNotification() subroutine is then called to mail the details of
the workflow document to the next approver. This subroutine creates
a new mail document and sets up the required Domino mail fields in
order for the document to be mailed. If the workflow document is set
up as a serial document, all approvers are sent an e-mail, if it is set up
as a parallel workflow document, only the next approver is e-mailed:
Select Case RoutingMethod(0)
'If it is Serial - mail gets sent to the NextApprover

Case "Serial"
SendTo = NextApprover
Recipient = NextApprover

'If it is Parallel - mail gets sent to all approvers
Case "Parallel"

SendTo = ApproverList
Recipient = "all Approvers"

End Select
Subject = WorkflowObject(0) & " requires your approval by
" & Format(DueDate(NextAppr), "Long Date")
maildoc.DueDate = Format(DueDate(NextAppr), "Long Date")
maildoc.FlowStatus = "Please follow this doclink to the "
& WorkflowObject(0) & " and either approve or deny it."
'Put a doclink in the Body field and populate the other
fields on the Bookmark mail form
Call rtitem.AppendDocLink(note, "Doclink to " &
WorkflowObject(0))
maildoc.InheritedDbTitle = db.Title
maildoc.Form = "Bookmark"
maildoc.SendTo = SendTo
maildoc.Subject = subject

• The mail message is then sent:
Call maildoc.Send (False)

• Finally, the UI document is then reloaded from the back-end
document to update the UI document fields.

Chapter 16: Domino Workflow 625

3. After the mail item is sent and the QuerySave event has finished, the
@PostedCommand([FileCloseWindow]) function is performed. This
triggers the QueryClose form event. This event cleans up any temporary
fields that were used in the document:
'Remove the Action field and any field that begins with d_
'This includes all temporary fields and all display only
'fields
'(a back-end save will save computed for display fields
'unless you do this)

note.RemoveItem("Action")
ItemList = note.Items
Forall n In ItemList

If Left(n.Name, 2) = "d_" Or Left(n.Name, 2) = "D_"
Then n.Remove

End Forall

4. The QueryClose event then executes the ResetAuthorNames()
subroutine. This subroutine removes the document author from
the AuthorizedEditors Authors field and adds the name of the
next approver:
Select Case NewStatus(0)
'If approvals are done - the FormAdmin is the only editor

Case StatusList(6), StatusList(7)
note.AuthorizedEditors = FormAdmin(0)

'If approvals are not started - the Requester is the only
'editor

Case StatusList(0), StatusList(1)
note.AuthorizedEditors = RequesterName(0)

Case Else
tmpList(0) = FormAdmin(0)
x = 1
Forall n In NextApprover

tmpList(x) = n
x = x + 1

End Forall
note.AuthorizedEditors = tmpList

End Select

5. The document is then finally closed.

In summary, when Submit is clicked, the field Action is set to Submitted and
the QuerySave event is triggered. The QuerySave event sets up a list of
remaining approvers, sets the next due date and sends an e-mail to the next
approver(s). Finally, the QueryClose event cleans up the document and sets
the author of the document to be the next approver.

626 Lotus Domino Release 5.0: A Developer’s Handbook

Approving a Request
When an approver clicks Approve, the following events occur:

1. On the Approve action button, the value of the field Action is set to
Approve and a dialog box is displayed to enable the approver to enter
any comments. The document is then saved and closed:
@Command([EditDocument]; "1");
FIELD Action := "Approve";
FIELD SaveOptions := "1";
@If(CommentsAllowed = "Yes";
@DialogBox("EnterComments"; [AutoVertFit] : [AutoHorzFit]);
PromptTitle);
@PostedCommand([FileSave]);
@PostedCommand([FileCloseWindow])

2. The @PostedCommand([FileSave]) command triggers the QuerySave
form event. The QuerySave event updates the current approver status,
date and comment fields:
Select Case Action(0)
Case "Approve"
'Set approval status for the current approver

ApprStatus = note.ApprStatus
ApprStatus(CurrentApprover) = StatusList(3)
note.ApprStatus = ApprStatus

'Set approval date for the current approver
ApprDate = note.ApprDate
ApprDate(CurrentApprover) = dt.LSLocalTime
note.ApprDate = ApprDate

'Set comment value for the current approver
NewComment = note.d_ApprComment
ApprComment = note.ApprComment
ApprComment(CurrentApprover) = NewComment(0)
note.ApprComment = ApprComment

'Set the next approver, the expiration and send mail to the
appropriate person(s)

SetNextApprover

3. The QuerySave event then executes the SetNextApprover() subroutine.
This subroutine iterates through the remaining approvers to select the
next approver or, if this is the last approver, sets the LastApprover
variable to be true:
Case "Approve"

ListMax = Ubound(ApproverList)
Redim tmpList(ListMax)
x = 0
For y = 0 To ListMax

If ApproverList(y) <> CurrentUser Then

Chapter 16: Domino Workflow 627

tmpList(x) = ApproverList(y)
x = x + 1

End If
Next
If x = 0 Then

tmpList(x) = "None"
LastApprover = True

End If
note.NextApprover = tmpList

End Select

4. If the current approver is the last approver, then the field
NextApprover is removed from the document:
If LastApprover Then

If Action(0) = "Approve" Then note.Status = StatusList(7)
note.RemoveItem("NextApprover")

End If

5. Returning to the QuerySave event, an e-mail is then sent by executing the
SendNotification() subroutine if the selected routing method is set up as
serial or if this is the last approver. If the routing method was set up as
parallel, then each person would already have been sent an e-mail when
the document was originally submitted:
If RoutingMethod(0) = "Serial" Then

If Not LastApprover Then SetDueDate
End If
If RoutingMethod(0) = "Serial" Or LastApprover Then
SendNotification

6. The SendNotification() subroutine first checks to see if this is the last
approver. If so, the document originator is sent an e-mail informing
them that their workflow request was successful. If there are more
approvers, then the next approver is sent an e-mail.

7. The QuerySave event then finishes and the Approve action button
@Command([FileCloseWindow]) is executed, which triggers the
QuerySave form event. Again, this subroutine cleans up any temporary
variables and sets the document author to that of the next approver.

In summary, when an approver clicks Approve, the current approver fields
are updated, the next approver is identified, and an e-mail is sent either to
the next approver or to the document originator if there are no remaining
approvers. Finally, if there are further approvers, the AuthorizedEditors
field is updated to the name of the next approver.

628 Lotus Domino Release 5.0: A Developer’s Handbook

Denying a Request
When an approver denies a request the following events occur:

1. The Deny action button sets the value of the Action field to Deny,
prompts the approver for the reason for denying the request, and saves
and closes the document:
@Command([EditDocument]; "1");
FIELD Action := "Deny";
FIELD SaveOptions := "1";
@If(CommentsAllowed = "Yes";
@DialogBox("EnterComments"; [AutoVertFit] : [AutoHorzFit]);
PromptTitle);
@PostedCommand([FileSave]);
@PostedCommand([FileCloseWindow])

2. When the @PostedCommand([FileSave]) command is executed, the
QuerySave form event is triggered. When the action is set to Deny, the
QuerySave event sets the document status field to Deny, removes the
NextApprover field, and e-mails the document originator by calling the
SendNotification() subroutine.

3. The @PostedCommand([FileCloseWindow]) command is then executed.
This triggers the QueryClose form event which removes any temporary
fields from the document and calls the ResetAuthorNames() subroutine.

4. The ResetAuthorNames() subroutine sets the value of the document
author field, AuthorizedAuthors, to the form administrator designated
in the Application Profile document.

Summary
In this chapter we have discussed how to create, set up, and use the
Approval Cycle template. We have also looked in detail at the LotusScript
code used within the ApprovalLogic subform to better understand how an
advanced workflow application can be designed.

Chapter 16: Domino Workflow 629

Domino uses URLs to access servers, databases, and other components of a
Web site, and display them to Web users. Knowing Domino URL commands
allows you to design links or enter commands directly into a browser to
navigate a Domino site or to reach specific components quickly.

Domino URL Command Syntax
Domino URL commands have the following syntax:

http://Host/Database/DominoObject?Action&Arguments

where:

Host

DNS entry or an IP address

Caution You cannot use the Domino Server name unless it has a DNS
entry.

Database

Database can be one of the following:

• The database file name with the path relative to notes\data.

• The database Replica ID.

DominoObject

A Domino construct (a view, document, form, navigator, agent, etc.)

Action

The desired operation on the specified Notes object, for example,
?OpenDatabase, ?OpenView, ?OpenDocument, ?EditDocument,
?OpenForm, ?ReadForm and so on.

Arguments

A qualifier of the action. For example, Count = 10 combined with the
?OpenView action limits the number of rows displayed in a view to 10.

Appendix A
Domino URLs

631

Use the following guidelines when working with Domino URLs:

1. Special identifiers used in Domino URL commands include:
$defaultView, $defaultForm, $defaultNav, $searchForm, $file, $icon,
$help, $about. These special identifiers are described in the following
sections of this appendix.

2. DominoObject can be any of the following:

• For a database, it is the database name or replicaID itself.

• For other objects, the Domino object name or alias, universal ID,
NoteID or special identifier. For example, to specify a view in a URL,
you can use any of the following: the view name, view universal ID,
view Note ID, or $defaultView.

A Domino object name and universal ID are identical in all replicas of
a database, but the NoteID will probably change in database replicas.
Therefore, it is best to use the Domino object name or universal ID
in URLs.

Note We will not show NoteID and universal ID in this section.

3. Action can be explicit or implicit.

• Examples of explicit actions include ?OpenServer, ?OpenDatabase,
?OpenView, ?OpenDocument, ?OpenForm, and ?EditDocument.

• Examples of implicit actions include ?OpenDocument, ?OpenView,
and ?OpenDatabase.

• If you do not specify an action, Domino defaults to the ?Open action.

4. Append the Login argument to any Domino URL to require user
authentication.

Because URLs may not contain spaces, use the + (plus sign) as a
separator. For example:
http://www.testR5.com/discussion.nsf/By+Author

5. Separate arguments with & (ampersands). For example:
http://www.testR5.com/leads.nsf/By+Salesperson?OpenView&Exp
andView

6. Separate hierarchical names with / (slashes). For example, to open a view
named Docs\By Author in a database named Discussion, enter:
http://www.testR5.com/discussion.nsf/Docs/By+Author

632 Lotus Domino Release 5.0: A Developer’s Handbook

Opening Servers, Databases, and Views
The following commands access servers, databases, views, About documents,
help documents, and database icons.

OpenServer
Syntax:

http://Host

Example:

http://www.testR5.com/?OpenServer

OpenDatabase
Syntax:

http://Host/DatabaseFileName?OpenDatabase

http://Host/DatabaseReplicaID?OpenDatabase

Examples:

http://www.testR5.com/leads.nsf?OpenDatabase

http://www.testR5.com/sales/discussion.nsf?OpenDatabase

http://www.testR5.com/852562F3007ABFD6?OpenDatabase

OpenView
Syntax:

http://Host/Database/ViewName?OpenView

http://Host/Database/$defaultview?OpenView

Note ViewName can be also an alias of the view.

Examples:

http://www.testR5.com/leads.nsf/By+Salesperson?OpenView

http://www.testR5.com/leads.nsf/$defaultview?OpenView

Arguments (Optional)
Append optional arguments to refine the URL. Combine any of the
following arguments for the desired result.

• Start = n Where n is the row number to start with when displaying the
view. The row number in a hierarchical view can include subindexes;
for example, Start=3.5.1 means thst the view will start at the third main
topic, subtopic 5, document 1.

• Count = n Where n is the number of rows to display.

• ExpandView Displays the view in expanded format.

Appendix A: Domino URLs 633

• CollapseView Displays the view in collapsed format.

• Expand = n Where n is the row number to display in expanded format in
a hierarchical view. Do not combine this argument with the ExpandView
or CollapseView0 arguments.

• Collapse = n Where n is the row number to display in collapsed format
in a hierarchical view. Do not combine this argument with the
ExpandView or CollapseView arguments.

• StartKey= string Open a view starting from the first document that
matches the key. The key is selected on the first sorted column.

Examples:

http://www.testR5.com/leads.nsf/By+Salesperson?OpenView&ExpandV
iew

http://www.testR5.com/leads.nsf/By+Salesperson?OpenView&Start=3
&Count=15

Note To open the first document in a view, use keyword $First and the
following syntax: http://host/database/view/$First.

OpenAbout
Use the OpenAbout command to access the “About database” document.

Syntax:

http://Host/Database/$about?OpenAbout

Examples:

http://www.testR5.com/leads.nsf/$about?OpenAbout

OpenHelp
Use the OpenHelp command to access the Help document.

Syntax:

http://Host/Database/$help?OpenHelp

Examples:

http://www.testR5.com/leads.nsf/$help?OpenHelp

OpenIcon
Use the OpenIcon command to access the database icon.

Syntax:

http://Host/Database/$icon?OpenIcon

Examples:

http://www.testR5.com/leads.nsf/$icon?OpenIcon

634 Lotus Domino Release 5.0: A Developer’s Handbook

Login Argument
Append the Login argument to any Domino URL to force user authentication,
regardless of the database access control list. This ensures that anonymous
Web users who weren’t initially prompted for a name and password when
they entered the site, are required to supply a name and password to complete
tasks that require user identity.

Note Do not use this argument to let a Web user switch login. In fact if a
user has already logged in with a certain UserID and Password, the login
argument will be ignored. The only way to re-login as a new user is to close
and then restart the browser.

Syntax:

You can use this argument with any URL, but the most common are:

http://Host?OpenServer&Login

http://Host/Database?OpenDatabase&Login

Examples:

http://www.testR5.com?OpenServer&login

http://www.testR5.com/sales/leads.nsf?OpenDatabase&login

Opening Framesets, Pages, Forms, Navigators, and Agents
The following commands open framesets, pages, forms, navigators, and
agents in a database.

OpenFrameset
Syntax:

http://Host/Database/FramesetName?OpenFrameset

Note FramesetName can be also an alias of the frameset.

Examples:

http://www.testR5.com/products.nsf/Product?OpenFrameset

OpenPage
Syntax:

http://Host/Database/PageName?OpenPage

Note PageName can be also an alias of the page.

Examples:

http://www.testR5.com/products.nsf/Product?OpenPage

Appendix A: Domino URLs 635

OpenForm
Syntax:

http://Host/Database/FormName?OpenForm

http://Host/Database/$defaultform?OpenForm

Note FormName can be also an alias of the form.

Examples:

http://www.testR5.com/products.nsf/Product?OpenForm

http://www.testR5.com/products.nsf/$defaultform?OpenForm

Arguments (Optional):
ParentUNID = The Universal ID of the parent document, to respond to or to
inherit from. Remember that if you are composing a response document or
you want to inherit formulas from another document on the Web, you
cannot select the parent document.

Syntax for using this argument:
http://Host/Database/FormUniversalID?OpenForm&ParentUNID

Examples:
http://www.testR5.com/products.nsf/40aa91d55cle4c8285256363004d
c9e0?OpenForm&ParentUNID=6bc72a92613fd6bf852563de001f1a25

Note You can also use the ?OpenRead or ?ReadForm command to open a
form only in read mode. This is useful when you don’t want to display the
submit button.

OpenNavigator
Syntax:

http://Host/Database/NavigatorName?OpenNavigator

http://Host/Database/$defaultNav?OpenNavigator

Examples:
http://www.testR5.com/products.nsf/Main+Navigator?OpenNavigator

http://www.testR5.com/products.nsf/$defaultNav?OpenNavigator

Note $defaultNav opens the folder navigator in a database.

OpenAgent
Syntax:

http://Host/Database/Agentname?OpenAgent

Examples:
http://www.testR5.com/sales/leads.nsf/Process+New+Leads?OpenAge
nt

636 Lotus Domino Release 5.0: A Developer’s Handbook

Opening, Editing, and Deleting Documents
The following commands manipulate documents in a database:

OpenDocument
Syntax:

http://Host/Database/View/DocumentKey?OpenDocument

DocumentKey contains the contents of the first sorted column in the
specified view. For more information, see the section on opening documents
by key later in this chapter.

Note The View is a necessary parameter because Domino uses the Form
Formula of a view to determine the form to use when displaying the document
(either using a Notes Client or a browser). If this formula is set to nothing,
Domino uses the form written in the “Form” field of the document.

Examples:

http://www.testR5.com/products.nsf/By+Part+Number/PC156?OpenDoc
ument

EditDocument
Syntax:

http://Host/Database/View/Document/?EditDocument

Example:
http://www.testR5.com/products.nsf/By+Part+Number/PC156?EditDoc
ument

DeleteDocument
Syntax:

http://Host/Database/View/Document?DeleteDocument

Example:
http://www.testR5.com/products.nsf/By+Part+Number/PC156?DeleteD
ocument

CreateDocument
The CreateDocument command is used as the POST action of an HTML
form. When the user submits a form, Domino obtains the data entered in the
form and creates a document.

Syntax:
http://Host/Database/Form/?CreateDocument

Example:
http://www.testR5.com/products.nsf/part?CreateDocument

Appendix A: Domino URLs 637

SaveDocument
The SaveDocument command is used as the POST action of a document
being edited. Domino updates the document with the new data entered in
the form.

Syntax:

http://Host/Database/View/Document?SaveDocument

Example:

http://www.testR5.com/products.nsf/a0cefa69d38ad9ed8525631b0065
82d0/4c95c7c6700160e2852563df0078cfeb?SaveDocument

Opening an Anchor Link
As seen in the previous section on Domino Links, a new syntax exists for
opening a document at a specified area of its text.

Syntax:

http://Host/Database/View/Document?OpenDocument#AnchorLabel

Example

http://localhost/RedBook.nsf/66aa0bd809ee8316852564d8004e7ddc/5
03d4ee771078042852564e400598a8e?OpenDocument#Paragraph+3

The Anchor label is created when you build the anchor inside the linked
document. If no name has been entered for that link, a default number is
added (Example: “#_0”).

Opening Documents by Key
The following commands allow you to open a document by key, or to
generate a URL to link to a document by key.

Using Domino URLs to Access a Document
To open a document by key, create a sorted view with the sort on the first
key column. You then can use a URL to open the document:

Syntax:

http://Host/DatabaseName/View/DocumentName?OpenDocument

Example:

http://www.testR5.com/register.nsf/Registered+Users/Jay+Street?
OpenDocument

where View is the name of the view, and DocumentName is the string, or
key, that appears in the first sorted or categorized column of the view. Use
this syntax to open, edit, or delete documents, and to open attached files.

638 Lotus Domino Release 5.0: A Developer’s Handbook

Domino returns the first document in the view with a column key that
exactly matches the DocumentName.

There may be more than one matching document; Domino always returns
the first match. The key must match completely for Domino to return the
document. However, the match is not case-sensitive or accent-sensitive.

Note that the view can be a view Note ID, UNID, or view name. In addition,
the implicit form of any of these commands will work when appropriate.
(EditDocument and DeleteDocument must be explicit commands).

Advantages of Using Keys Instead of Universal ID
Let’s suppose that the following two URLs refer to the same document,
which is the personal document of “Jay Street” (for instance):

http://www.testR5.com/register.nsf/
Registered+Users/Jay+Street?OpenDocument

http://www.testR5.com/register.nsf/
a0cefa69d38ad9ed8525631b006582d0/
4c95c7c6700160e2852563df0078cfeb?OpenDocument

The first URL is, of course, much more understandable than the second URL
and therefore, easier to remember. However, this is not the only advantage
of using keys to refer to Domino objects.

Imagine that the “Jay Street” document has been deleted and replaced by a
new copy. The reasons for using this event might be, for example, where all
documents of that kind are deleted and rebuilt every night by an agent that
takes updated data from an external data source. In this situation, the first
URL continues to reference the “Jay Street” document, while the second URL
fails because the Universal ID of the new document will be different from
the former. This means that if a user has stored the first URL as a bookmark
he will have no problem finding his document again, and so will avoid
repeated searches.

However, you should also consider the following implications of using URL
by keys:

• A developer must use @formulas to calculate every URL using keys, and
must hide or inhibit all the URLs automatically generated by Domino.
This means that you don’t need to copy and paste links to Domino
objects.

• The access to documents is faster when using Universal ID than using
keys, as the server must read the view index to reach the document
when using keys.

Appendix A: Domino URLs 639

Opening Image Files, Attachments and OLE Objects
The following commands open files and objects within a document:

OpenElement
Use the ?OpenElement command to access file attachments, image files, and
OLE objects. This is very useful when writing passthru HTML; for example,
when you need to display an image that is attached into another Notes
document you can use the URL described here.

Using OpenElement with File Attachments
Syntax:

http://Host/Database/View/Document/$File/Filename?OpenElement

http://Host/Database/View/Document/$File/
InternalFileName/Filename?OpenElement

Example:

http://www.testR5.com/lproducts.nsf/
By+Part+Number/SN156/$File/spec.txt?OpenElement

If more than one attached file has the same name, the URL includes both the
internal file name as well as the external name. Since the internal file name is
not easily determined, make sure that all attached files have unique names.

Domino treats all file attachment OpenElement commands as implicit
commands, because some browsers require that the URL ends with the
attached file name.

Using OpenElement with Image Files
It is used to retrieve an image that is an imported image into a Notes field.

Syntax:

http://Host/Database/View/Document/FieldName/
FieldOffset?OpenElement&FieldElemFormat=ImageFormat

FieldOffset is represented by xx.yy, where xx is the field number, and yy is the
byte offset into the field.

ImageFormat is either GIF or JPEG. If the FieldElemFormat is not entered,
Domino assumes that the image file format is GIF.

To see an example, try to import a GIF image into a RichText field and
launch the preview in browser. Next, look at the HTML source for that
image. You should find something like this:

<IMG SRC="/database/view/document/FieldName/xx.yy
?OpenElement&FieldElemFormat=GIF>

640 Lotus Domino Release 5.0: A Developer’s Handbook

Using OpenElement with OLE Objects
Syntax:

http://Host/Database/View/Document/FieldName/
FieldOffset/$OLEOBJINFO/FieldOffset/obj.ods?OpenElement

Note The current URL syntax for referencing images and objects in Notes
documents — specifically the FieldOffset — makes it impractical to create
these URLs manually. As an alternative, you may paste the actual bitmap or
object in place of the reference, create URL references to files stored in the
file system, or attach the files to the documents.

Searching for Text with Domino Search URLs
The following commands allow you to search a Domino site or to search
individual databases within a Domino site:

SearchSite
Syntax:

http://Host/Database/[$SearchForm]?SearchSite[ArgumentList]

Where $SearchForm and ArgumentList are optional arguments. The special
identifier $SearchForm indicates that Domino will present a search site form
for search input. If this identifier is provided, ArgumentList is ignored.

Examples:

http://www.testR5.com/mercsrch.nsf/$SearchForm?SearchSite

http://www.testR5.com/mercsrch.nsf/?SearchSite&
Query=product+info+requests;1;;0;FALSE

SearchView
Syntax:

http://Host/Database/View/[$SearchForm]?SearchView[Argument
List]

Where $SearchForm and ArgumentList are optional arguments.

The special identifier $SearchForm indicates that Domino will present a
search view form for search input. If this identifier is provided, the
ArgumentList is ignored.

Examples:

http://www.testR5.com/products.nsf/By+Product+Number/
$SearchForm?SearchView

http://www.testR5.com/products.nsf/By+Product+Number/
?SearchView&Query=PC156;3;;0;TRUE;

Appendix A: Domino URLs 641

Arguments (Optional)
ArgumentList = Query; SearchOrder; SearchThesaurus; SearchMax;
SearchWV

Where:

• Query = the search string

• SearchOrder=[1,2,3] default = 1.

• 1 = “By Relevance”

• 2 = “By Date Ascending”

• 3 =“By Date Descending”

• SearchThesaurus=[TRUE, FALSE], default = FALSE

• SearchMax=[n], 0 default= 0 (meaning all)

• SearchWord Variants=[TRUE, FALSE], default = TRUE

The ArgumentList must contain the Query argument; in addition, it may
contain any or all of the other arguments.

• OldSearchQuery

Repeats the last query.

642 Lotus Domino Release 5.0: A Developer’s Handbook

In this appendix we have put together a list of shortcuts that are available
when working with Domino.

Caution Some of these shortcuts are language dependent. The shortcuts
listed are based on the US English version of Domino. They may vary in
other language versions. Refer to the documentation if you are in doubt.

Workspace Keys

continued

ESCClose a document

CTRL+OOpen a database (add a database to workspace)

CTRL+NCreate a new database

ALT+3Send a memo

CTRL+MCreate a new memo

F10 or ALTAccess the menu bar so you can use arrow keys to
choose commands

CTRL+F10Maximize all open windows

CTRL+F9Minimize active window and cascade other active
windows

SH+F9Rebuild all views in current document, view, or
workspace

F9Update all fields in current document, view, or
workspace

CTRL+F6Cycle through open windows

F6Cycle through open panes

ALT+F5Restore Notes program window to default size

F5Log off Notes (revoke password login but leave Notes
running)

ALT+F4Exit Notes

F1Get context-sensitive help

ShortcutAction

Appendix B
Shortcuts

643

END or PAGE DOWNMove from any Replicator entry to the last entry

HOME or PAGE UPMove from any Replicator entry to the first entry

up arrow or down arrowMove from one Replicator entry to another

DELDelete a database icon, or mark document for deletion

CTRL+SH+arrow
To stop moving, press
ENTER.

Move a database icon

arrowMove from one database icon to another

ENDMove from any workspace tab except Replicator to
the Replicator tab

HOMEMove from any workspace tab except Replicator to
the first workspace tab

right arrow or left arrowMove from one workspace tab to another

CTRL+LEnter and follow a URL to a World Wide Web site

TABOpen the Scan Unread dialog box

CTRL+BREAKCancel a server operation

ShortcutAction

Function Keys

continued

SH+F7Outdent first line in a paragraph

F7Indent the first line in a paragraph

CTRL+F6Cycle through open windows

ALT+F5Restore Notes program window to default size

F5Log off Notes (revoke password login but leave
Notes running)

ALT+F4Exit Notes

SH+F4Go to previous unread document

F4Go to next unread document

SH+F3Go to previous selected document

F3Go to next selected document

SH+F2Reduce text to next available point size

F2Enlarge text to next available point size

F1Get context-sensitive Help

ShortcutAction

644 Lotus Domino Release 5.0: A Developer’s Handbook

ALTAccess the action bar so you can use number keys to
choose buttons

F10Access the menu bar so you can use arrow keys to
choose commands

CTRL+F10Maximize all open windows

CTRL+F9Minimize active window and cascade other active
windows

SH+CTRL+F9Rebuild all views in current database

SH+F9Rebuild the current view

F9Update all fields in current document, view, or
workspace

SH+F8Outdent entire paragraph

F8Indent entire paragraph

ShortcutAction

Dialog Boxes

ESCCancel any changes and close the dialog box

ENTERAccept the default or highlighted selection(s)

- or ¬Highlight previous item in a list box or set of options

¯ or ®Highlight next item in a list box or set of options

SH+TABGo to the previous option or set of options

TABGo to the next option or set of options

ShortcutAction

Keys for Editing Documents or Designing Domino Objects

continued

CTRL+IItalicize selected text

CTRL+GFind next and replace

CTRL+FFind and replace

CTRL+EEdit a document (does not apply to forms or subforms)

CTRL+C Copy selected text or object

CTRL+BBold selected text

CTRL+ASelect contents

ShortcutAction

Appendix B: Shortcuts 645

ALT+ENTERClose or open (toggle) the InfoBox

CTRL+WClose the current element

CTRL+SSave the current element

CTRL+ZUndo last action

DELETEClear selected text or object

CTRL+XCut selected text or object

CTRL+VPaste

CTRL+SH+LInsert page break

CTRL+UUnderline selected text

CTRL+TChange selected text to normal

CTRL+KFormat text (font, size, color, and so on)

CTRL+JFormat paragraphs (margins, tabs, line spacing,
and so on)

ShortcutAction

646 Lotus Domino Release 5.0: A Developer’s Handbook

In Chapter 11 we described how the information is directed between the
client and the server. We know that CORBA architecture must reside in both
the client and the server and that the IIOP protocol transfers the information
between the client and that server over the TCP/IP-network. Furthermore,
we know that the ORB enables the requests between client and server. This
section will explain the CORBA components in Domino so that you can
better understand what is really happening when you use CORBA applets
in your application.

CORBA is made up of a number of different components that make this
communication possible. The following section introduces these CORBA
components:

CORBA Client Components
The client is any application requiring remote services from a CORBA-
enabled server. With Domino, a Java program doesn’t have the local APIs, so
it must use local CORBA stubs that invoke the corresponding remote request
on the server.

Client IDL Stubs
From the client’s perspective, these local stub classes are the same as the
actual implementations. Internally these stub classes act as a local proxy for
the remote server objects and define how clients invoke corresponding
remote services on servers. Once a successful request has been made to
instantiate a remote server object, a reference ID to that object is returned.
Future method requests on that remote object are sent with the reference id
to the remote server and executed on the remote object via the CORBA
server components with data being returned if required. This is seamless to
the programmer.

The client stubs are created by first defining your server interfaces using the
CORBA Interface Definition Language (IDL). This IDL is language-
independent syntax and it defines the types of objects, their attributes, the
methods they export, and the method parameters. There must be one IDL
definition per interface. You can think of an interface as a class definition
without the implementation. From a Domino API perspective, there is one
IDL definition field per Domino Object Model C++ class that we wish to
expose to CORBA.

Appendix C
CORBA Internals

647

The IDL file is pre-compiled into the language of the client and the server by
a CORBA pre-compiler. This would require two compiles for the Domino
implementation, one for the Java client and the second for the server C++
Domino APIs. The client and server-side IDL stubs are then produced.

Within Domino 5.0, the Java client IDL stubs are contained in the
lotus.notes.noi package in the NSCO.jar file. This jar file also contains the
Java client ORB classes. This jar file must be imported with the applet classes
into Domino or accessible to a Java standalone application.

The client stub also includes code that encodes and decodes (marshaling) the
requested operation and its parameters into a flattened message format,
General Inter-ORB Protocol (GIOP), that can be sent to the server. GIOP is
the message and data format protocol for communications across the
TCP/IP. GIOP defines message formats for all ORB request/reply semantics.
This message is passed to the client ORB.

Client ORB
The ORB (Object Request Broker) is the transportation bus for CORBA object
requests to and from remote objects.

The transport protocol between ORBS, Internet Inter-ORB Protocol (IIOP),
specifies how GIOP messages are exchanged over the TCP/IP network.
You don’t need to worry about GIOP, because it is mapped to TCP/IP.

Note To be CORBA 2.0 compatible, an ORB must support GIOP over
TCP/IP.

The Domino R5.0 Java client ORB is a lighter version for server ORB and
performs the following functions:

• HTTP tunneling allows the client side to pass through firewalls using
HTTP tunnels.

• Security allows the client to use SSL to create authenticated sessions
with the server.

Client Side Objects (CSO)
When a user uses a CORBA applet, the CORBA components, including the
Client Side Objects (CSO), are loaded onto the client. These classes feature
caching, helper and holder classes, a binary compatibility layer, and the
ability to run on other protocols, for example, DCOM. These are transparent
to the developer. Helper classes contain methods that manipulate IDL types.
A helper Java class is defined for each IDL Type and interface. Holder
classes provide the parameter passing modes that Java doesn’t provide.

Note This option is not yet available in Domino R5.0, but it is coming in a
future release.

648 Lotus Domino Release 5.0: A Developer’s Handbook

CORBA Server Components
On retrieving IIOP requests, the server ORB uses the Basic Object Adapter in
combination with the Implementation Repository to pass parameters and
method requests to the required server object via the server stubs. The server
stubs communicate with the actual Object Implementation, which in
Domino’s case is the C++ back-end DOM classes.

Basic Object Adapter (BOA)
BOA is a run-time core ORB communication service for instantiating server
objects, passing requests and assigning object IDs (object references).

Server IDL Stubs
The server stub provides interfaces to each service provided by the server. In
Domino there will be a server stub for each back-end DOM C++ class. These
C++ stubs are created using an IDL compiler as described in the client IDL
stub. In other words, the IDL compiler translates IDL to your target language
source code (skeletons) and then this skeleton calls your objects.

Another function of the R5.0 ORB is the static loading of the DOM server
IDL stubs via a shared library at startup.

Implementation Repository
This is a runtime repository for object information, such as the classes that a
server supports, and which objects are instantiated and their IDs.

Domino R5.0 Implementation
The R5.0 ORB allows the Domino Object Model to load and respond to client
IIOP requests. Its primary use will be for doing client-side processing in
Domino Web applications.

The R5.0 ORB will be a modified version of the IBM ORB. Some of the
original IBM ORB will be stripped out. Improvements have been made to
address such issues as scalability. Other customer created ORBs may also
run on the Domino server.

This ORB will be released as a DLL (NORB.DLL). To load the server ORB
(and other CORBA components outlined above) into memory on the Domino
server, the administrator loads the NOI server task (nnoi.exe). This server
addin process links with the ORB (norb.dll) and loads it into memory. This
process can be loaded at the server startup by placing it in the notes.ini
ServerTasks line.

ServerTasks =, NOI

The server ORB listens to IIOP requests via an available port to HTTP. This
port can be changed via the server document.

Appendix C: CORBA Internals 649

Communicating
When the user opens their applications via the Web CORBA starts to run. In
the following section, we explain in which order these CORBA components
run, and what they do when the user opens the CORBA applets in the
Domino application.

From the client to the server (the request):

1. First, the client application calls the stub class method.

2. The stub passes the request and parameters to the client ORB.

3. The client ORB then packages the request and parameters into the IIOP
and sends it to the server ORB.

4. The server ORB now unpacks it and passes it to the static server stubs
(server skeleton).

5. The skeleton now calls the server object class method and the method
runs.

From the server to the client (the response):

1. When the server object methods have run, the result (if there is any), it is
passed to the server skeleton.

2. The skeleton then passes it to the server ORB.

3. The server ORB packages the information/result to the IIOP and sends it
to the client ORB.

4. The client ORB unpackages the information that was sent and passes it
to the waiting stub.

5. The stub passes the information/result to the calling application.

6. The information/result is shown by user.

650 Lotus Domino Release 5.0: A Developer’s Handbook

The following figure shows how the Java applet on a browser
communicates with the Domino R5.0 Server:

Domino Server

Skeletons

CB Series C++
server ORB

Notes C API
(core)

CORBA Adapter

Back-End Classes

Browser Client

Browser

JVM

Applet

CSO

Stubs

CB Series
Java client

ORB
IIOP

CORBA Objects
The following two figures illustrate the CORBA objects and show what
Domino supports, and how you can add some additional function to your
application using CORBA.

Object model in hierarchy order:

ObjectServer

Session

DbDirector y Database

Form Document

Item

EmbeddedOb ject

View

Appendix C: CORBA Internals 651

Client-Side Object in hierarchy order:

Session

Date/Range Database

View

ViewNavi gator

ViewEntr y

 ViewCollection

ViewEntr y

Name International

652 Lotus Domino Release 5.0: A Developer’s Handbook

This publication is intended to help you develop applications using Lotus
Domino Release 5.0.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by Lotus Domino. See the
publications section of the announcement for Lotus Domino and related
products for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM products, programs, or services
may be used. Any functionally equivalent program that does not infringe on
any IBM intellectual property rights may be used instead of the IBM
product, program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available subject to appropriate terms and
conditions, including, in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(“vendor”) products in this manual has been supplied by the vendors, and
IBM assumes no responsibility for its accuracy or completeness. The use of
this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer’s ability to evaluate

Special Notices

653

and integrate them into the customer’s operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF, when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX NetView
AS/400 Network Station
Bean Machine OfficeVision
BookManager OS/2
BookMaster OS/400
DB2 OS/390
DB2 Connect Thinkpad
DB2 Connectors Visual Basic
DB2 Universal Database VisualAge
IBM Visual Beans
MQSeries VisualGen
MVS/ESA VM
Mwave VSE
Net.Data Workplace
Netfinity Workplace Shell

654 Lotus Domino Release 5.0: A Developer’s Handbook

The following are trademarks of Lotus Development Corporation in the
United States and/or other countries:

1-2-3® LotusScript®
Approach® Lotus SmartSuite®
cc:Mail Notes HiTest
DataLens® Notes ViP®
Freelance® Notes Mail®
InterNotes NotesPump
InterNotes Web Publisher NotesSQL
Lotus® Notes/FX
Lotus Domino Phone Notes®
Lotus Notes Reporter Phone Notes Mobile Mail
Lotus Notes® SmartIcons®
Video Notes Word Pro

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product or service names may be the trademarks or service
marks of others.

Special Notices 655

656

This section lists other Lotus-related publications produced by the
International Technical Support Organization (ITSO). For information on
ordering these ITSO publications see, “How To Get ITSO Redbooks.”

ITSO Lotus Publications
� Lotus Notes 4.5: A Developers Handbook, IBM form number SG24-4876,

Lotus part number AA0425

� LotusScript for Visual Basic Programmers, IBM form number SG24-4856,
Lotus part number 12498

� Secrets to Running Lotus Notes: The Decisions No One Tells You How to
Make, IBM form number SG24-4875, Lotus part number AA0424

� Enterprise Integration with Domino.Connect, IBM form number SG24-2181,
Lotus part number 12913

� Deploying Domino in an S/390 Environment, IBM form number SG24-2182,
Lotus part number 12957

� Guide to Deploying Domino Go Webserver, IBM form number SG24-2002,
Lotus part number 12991

� Developing Web Applications Using Lotus Notes Designer for Domino 4.6,
IBM form number SG24-2183, Lotus part number 12974

� The Next Step in Messaging: Case Studies on Lotus cc:Mail to Lotus Domino
and Lotus Notes, IBM form number SG24-5100, Lotus part number 12992

� Lotus Notes and Domino: The Next Generation in Messaging. Moving from
Microsoft Exchange to Lotus Notes and Domino, IBM form number
SG24-5167, Lotus part number CT7NLNA

� Lotus Notes and Domino: The Next Generation in Messaging. Moving from
Microsoft Mail to Lotus Notes and Domino, IBM form number SG24-5152,
Lotus part number CT7NJNA

� Lotus Notes and Domino: The Next Generation in Messaging. Moving from
Novell GroupWise to Lotus Notes and Domino, IBM form number
SG24-5321, Lotus part number CT7NNNA

� High Availability and Scalability with Domino Clustering and Partitioning on
Windows NT, IBM form number SG24-5141, Lotus part number
CT6XMIE

Related ITSO Publications

 657

Other Lotus-Related ITSO Publications
The publications listed in this section may also be of interest:

� The Domino Defense: Security in Lotus Notes and the Internet, IBM form
number SG24-4848, Lotus part number 12967

� Lotus Solutions for the Enterprise, Volume 1. Lotus Notes: An Enterprise
Application Platform, IBM form number SG24-4837, Lotus part number
12968

� Lotus Solutions for the Enterprise, Volume 3. Using the IBM CICS Gateway
for Lotus Notes, IBM form number SG24-4512

� Lotus Solutions for the Enterprise, Volume 4. Lotus Notes and the MQSeries
Enterprise Integrator, IBM form number SG24-2217, Lotus part number
12992

� Lotus Solutions for the Enterprise, Volume 5. NotesPump, the Enterprise Data
Mover, IBM form number SG24-5255, Lotus part number CT69DNA

� From Client/Server to Network Computing, A Migration to Domino, IBM
form number SG24-5087, Lotus part number CT699NA

� Lotus Domino Integration Guide for IBM Netfinity and IBM PC Servers, IBM
form number SG24-2102

� Lotus Domino Release 4.6 on IBM RS/6000: Installation, Customization and
Administration, IBM form number SG24-4694, Lotus part number 12969

� High Availability and Scalability with Domino Clustering and Partitioning on
AIX, IBM form number SG24-5163, Lotus part number CT7J0NA

� AS/400 Electronic-Mail Capabilities, IBM form number SG24-4703

� Mail Integration for Lotus Notes 4.5 on the IBM Integrated PC Server for
AS/400, IBM form number SG24-4977

� Using Lotus Notes on the IBM Integrated PC Server for AS/400, IBM form
number SG24-4779

� Lotus Domino for AS/400: Installation, Customization and Administration,
IBM form number SG24-5181, Lotus part number AA0964

� Lotus Domino Server 4.5 on OS/390: Installation, Customization &
Administration, IBM form number SG24-2083, Lotus part number
AA0963

� Lotus Domino for S/390 Performance Tuning and Capacity Planning, IBM
form number SG24-5149, Lotus part number CT6XNIE

� Porting C Applications to Lotus Domino on S/390, IBM form number
SG24-2092, Lotus part number AB1720

� Enterprise Integration with Domino for S/390, IBM form number SG24-5150

658 Lotus Domino Release 5.0: A Developer’s Handbook

� Managing Domino/Notes with Tivoli Manager for Domino, Enterprise Edition,
Version 1.5, IBM form number SG24-2104

� Measuring Lotus Notes Response Times with Tivoli’s ARM Agents, IBM form
number SG24-4787, Lotus part number CT6UKIE

� Image and Workflow Library: Integrating IBM FlowMark with Lotus Notes,
IBM form number SG24-4851

� Lotus Notes Release 4 In a Multiplatform Environment, IBM form number
SG24-4649

� Implementing LAN Server for MVS in a Lotus Notes Environment, IBM form
number SG24-4741

� Using ADSM to Back Up Lotus Notes, IBM form number SG24-4534

� NetFinity V5.0 Database Support, IBM form number SG24-4808

� An Approach to ODBC: Lotus Approach to DB2, IBM form number
SG24-4685

Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

SK2T-2177SBOF-7201System/390 Redbooks Collection

SK2T-6022SBOF-7370Networking and Systems Management
Redbooks Collection

SK2T-8038SBOF-7240Transaction Processing and Data
Management Redbook Collection

SK2T-2849SBOF-7270AS/400 Redbooks Collection

SK2T-8043SBOF-8700RS/6000 Redbooks Collection (PDF)

SK2T-8040SBOF-7230RS/6000 Redbooks Collection
(HTML, BkMgr)

SK2T-8041SBOF-7205RS/6000 Redbooks Collection (PostScript)

SK2T-8037SBOF-7290Application Development Redbooks
Collection

SK2T-8044SBOF-6898Tivoli Redbooks Collection

SK2T-8039SBOF-6899Lotus Redbooks Collection

Collection Kit
Number

Subscription
NumberCD-ROM Title

Related ITSO Publications 659

660

This section explains how both customers and IBM employees can find out about ITSO
redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail
is also provided.

� Redbooks Web Site http://www.redbooks.ibm.com
Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

� E-mail Orders
Send orders via e-mail including information from the redbook order form to:

IBM Mail Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

� Telephone orders
United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish (+45) 4810-1220 - French (+45) 4810-1270 - Norwegian
(+45) 4810-1420 - Dutch (+45) 4810-1020 - German (+45) 4810-1120 - Spanish
(+45) 4810-1540 - English (+45) 4810-1620 - Italian (+45) 4810-1170 - Swedish
(+45) 4810-1670 - Finnish

This information was current at the time of publication, but is continually subject to change. The
latest information for customers may be found at http://www.redbooks.ibm.com/ and for IBM
employees at http://w3.itso.ibm.com/.

IBM Intranet for Employees
IBM employees may register for information on workshops, residencies, and redbooks by
accessing the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing
List button. Look in the Materials repository for workshops, presentations, papers, and Web
pages developed and written by the ITSO technical professionals; click the Additional Materials
button. Employees may also view redbook, residency, and workshop announcements at
http://inews.ibm.com/.

How to Get ITSO Redbooks

661

662 Lotus Domino R5.0: A Developer’s Handbook

QuantityOrder NumberTitle

Please send me the following:

(+45) 48 14 2207 (long distance charge)Outside North America

1-403-267-4455Canada

1-800-445-9269United States (toll free)

Fax your redbook orders to:

IBM Redbook Fax Order Form

Telephone number Telefax number VAT number

Postal code CountryCity

Address

Company

Last nameFirst name

❏ Invoice to customer number

❏ Credit card number

We accept American Express, Diners, Eurocard, MasterCard, and Visa. Payment by credit card not available in all
countries. Signature mandatory for credit card payment.

SignatureCard issued toCredit card expiration date

663

664 Book Title

Symbols
$$Return field, 71

link to Web pages, 72
$$Search, 259
$$SearchSiteTemplate, 269
$$SearchTemplate, 265
$$SearchTemplateDefault, 265
$$ViewBody, 265
$about, 634
$defaultform, 636
$defaultNav, 636
$File, 640
$First, 634
$help, 634
$icon, 634
$OLEOBJINFO, 641
$Readers Field, 228
$SearchForm, 641
& arguments separator, 632
($All) view name, 116
($Inbox) view name, 116
($Sent) view name, 116
($Trash) view name, 116
(Declarations), 56

for fields, 76
(Options), 56

for fields, 76
@ClientType, 241
@Command

ToolsRunMacro, 201
@DB Functions, 552

@DBColumn, 552
@DBCommand, 553
@DBLookup, 553

@DBColumn, 513, 551, 552
@DBCommand, 513, 551, 553
@DBLookup, 513, 551, 553
@Functions, 272, 276, 293, 306, 514
@URLOpen, calling agents, 202
@UserName, 240
@UserNameList, 241
@UserRoles, 240

Numbers
1-2-3

OLE, 391

A
About Database document, 183
Access Control

@ClientType, 241
@UserName, 240
@UserNameList, 241
@UserRoles, 240
Authors Field, 230
Combining Readers and Authors

Fields, 231
Controlled Access Sections, 232
Developing a Plan, 248
Distinguishing True Security

Features, 252
Documents, 227
Field Editor Access Security

Option, 232
Forms, 224
Hide When Formulas, 233
Hiding the Design of a Database,

242
HTML and Other Files, 245
Password Field, 242
Pasting Documents into

Database, 242
Programming Considerations,

240
Reader Access, 228
Using Directory Link Files, 222
Using Encryption for Field

Security, 233
Using Outline Control, 222
Using Signatures for Security, 242
Views, 223

Access Control for HTML and Other
Files, 245

Access Control List (ACL), 212
example, 283
settings for creating agents, 185

access list for views and folders, 155

accessing Notes from Visual Basic,
494

accessing RDBMS from Notes, 513,
514

ACL, 212
Access Options, 216
Anonymous Access, 217
Changing the ACL

Programmatically, 220
Enforce Consistent ACL, 219
Maximum Internet Name and

Password Access, 220
Public Access Users, 226
Roles, 218
User and Server Access Levels,

213
User Types, 215

Action, 631
adding to navigators, 159
bars, 127
buttons, 103
color, 105
drop down, 104
in navigators, 156
object, 292

Activate
OLE, 385

advanced templates, 37
agent log, 196
Agent Manager, 197
agents

capturing CGI variables, 202
changing documents, 205
debugging, 196
disabling, 197
restricted, 186
running multiple instances, 550
scheduling, 188
selecting documents, 190
shared, 187
simple actions, 191
testing, 195
unrestricted, 186
WebQueryOpen, 201
WebQuerySave, 201

Index 665

Index

alias
framesets, 170
in keyword lists, 571
name prefix, 570
of form, 46
Use Aliases, 593
used in localization, 593

aligning
fields, 85
paragraph, 69
tables, 89

AllDocuments property, 284
Alt - W - #, 12
alternate text

hotspots, 107
Anonymous Access, 217
anonymous form, 48
API

for Notes, 344
Applet security

CORBA, 370
applets

rich text field, 70
Application Profile form, 615
application templates, 27
Approach

OLE, 391
Approval Cycle template, 608
Approval Logic subform, 615
argument passing to LSX, 416
Arguments, 631
Authors Field, 230
auto launch, 50
auto refresh a field, 332

B
back-end classes, 306
background color

forms, 51
background graphic

in navigators, 156
Backup and Restore, 248
BASIC, 275
border

of cells, 90
breakpoints, 324
built-in functions, 320
Button class, 277
button object, 290
buttons

action bar, 103
in navigators, 156

C
C programming language

header files for LSX, 404
calendar views

conflict marks, 123
creating, 122

categories
hiding in views, 119

categorizing a view, 142
cells

border of, 90
colors, 90
in tables, 88

CGI, 202. See Also Common Gateway
Interface

class library, LS:DO, 529
class method arguments, LSX, 417
class property arguments, LSX, 419
Click event

example, 291
Collapse, 634
CollapseView, 634
collapsible sections, 84
color

action bar, 105
of cells, 90
for fields, 68
for views, 118
unread documents, 141

column headings for views, 118
COM, common object model, 409
Common Data Security Architecture

(CDSA), 248
Common Gateway Interface, 107

table of variables, 107
using, 71

Common Object Model, 409
compile errors, 321
computed subforms, 80
computed text, 101
configuring

DECS, 441
conformance levels, 468, 521
Connection Server Administrator

database, 441
containment hierarchy, 281
Controlled Access Sections, 232
cookies

features, 338
syntax, 338

Copy Database dialog box, 32

copying
views, 112

CORBA, 341
CORBA/IIOP, 361

Applet security, 370
benefits of using CORBA, 361
Coding the applet, 365
CORBA Architecture, 362
and Domino, 363
extending the AppletBase class,

366
and getSession(), 367
importing applets, 368
Interface Definition Language

(IDL), 362
Object Request Broker, 362
Security options, 365

Count, 633
create Java agent, 357
CreateObject

OLE, 383
creating

a navigator, 157
agents, 185
background in navigators, 158
buttons, 127
calendar views, 122
collapsible section, 84
computed subform, 80
DECS activity document, 446
folders, 154
forms, 45
framesets, 169
language databases, 574, 585
layout region, 83
an LSX, 411
nested tables, 87
new database, 28, 33
pages, 164
report database, 565, 566
resources, 180
tables, 85
views, 112

Ctrl - Tab, 12
currency symbols, 589
CurrentDatabase property, 282
Customized Authentication,

Encryption, Signing
APIs, 247

customized search form
creating, 260

666 Lotus Domino Release 5.0: A Developer’s Handbook

D
data type mapping, 525
data types of an LSX, 415
database access facilities, 514
database record, 284
database script, 183
databases, 631

creating new, 28, 33
default size, 30
encrypting, 29, 32, 35
inherit design, 37
localizing, 555
multi-database search type, 34
multilingual, 561
Name & Address Book type, 34
preparing for localization, 562,

589, 603
properties, 33
removing subforms, 79
tagging, 560, 566
unilingual, 561

Date Picker
embedded, 97

Date/Time values in views, 146
Debugging

agents, 196
debugger, 321
debug mode, 323
OLE, 379

DECS
accessing multiple tables, 449
Administrator navigator, 442
configuring, 441
connecting to DB2, 439
Connection Server Administrator

database, 441
creating an activity document,

446
data sources, 438
loading, 437
Lotus Connectors, 452
realtime connection, 443
running an activity, 448
shutting down, 437
verifying setup, 440

default focus for fields, 67
default form, 49, 285
default value

for fields, 76
default view, 117
design elements

not allowed in layout regions, 83
pages, 163

supported in tables, 85
translation, 555

design, inherit, 37
Designer Pane, 11
designing

an LSX, 408
DisableRole method, 283
disabling agents, 197
disabling the debugger, 322
Do Not Translate

Domino Global WorkBench, 573
DO_NOT_TAG style, 595
document fields

$UpdatedBy, 285
form, 285

document retrieval, 40
DocumentContext, 202
documents

changing associated form, 206
sorting in views, 122, 148

Domino Administrator R5.0, 6
Domino Application Server, 1
Domino Clients, 4
Domino Design Elements, 15
Domino Designer

Overview, 9
Domino Enterprise Connectivity

Services, 437
Domino Enterprise Server, 2
Domino Global WorkBench

alias in keywords list, 571
checking for size problems, 578
concatenated sentences, 596
creating a new glossary, 564
creating a project, 562
creating a report database, 566
do not translate, 573
exporting languages for

translation using other tools,
583

handling keywords, 598
language database, 559
language switchbar, 557
localizing an application, 561
prefix for alias names, 570
prevent translation, 572
processes supported, 555
Project Manager, 560
pseudo-translation, 573
rebuilding, 588
report database, 559
source database, 558
standalone tagger, 560
synchronizer, 561

synchronization between several
languages, 557

tagged database, 558, 559, 566
Translatable lists, 598
Untranslated terms, 576
Updating, 588
WorkBench, 559

Domino Mail Server, 1
Domino profile, 338
Domino Security Architecture, 210
Domino Server Family, 1
Domino Server Services, 2
Domino Web Server API, 247
DoVerb

OLE, 385

E
embedded

Date Picker, 97
elements, 96
file upload control, 100
folder pane, 99
navigators, 97
outline, 176
outline control, 97
scheduling control, 99
OLE Objects, 385
view, 97, 143

embedded SQL, 468
EmbedObject

OLE, 384
enabling the debugger, 322
encryption, 29

creating an encryption key, 234
databases, 35
field security, 233

Enforce consistent ACL, 219
Entering event

for fields, 76
enterprise integration technologies,

25
error handler, 321
Evaluate function, 308
events

action object, 292
button object, 290
click, 291
exiting, 289
for field object, 288
for fields, 76
forms, 55
initialize, 57
not available for subforms, 78

Index 667

onHelpRequest, 56
Postmodechange, 56
Postopen, 56, 286
Postrecalc, 57
Queryclose, 57
Querymodechange, 56
Queryopen, 56
Querysave, 310
sequence of, 293, 297
terminate, 57
WebQueryOpen, 56
WebQuerySave, 56

events in Notes, 286
Event Model, 286
examples

accessing a field, 282, 283
accessing an ACLEntry, 283
Click event, 286, 291
cookie, 339
Evaluate function, 309
Exiting event, 289
Java agent, 357
JavaScript, 332, 334, 335, 336, 337
LSX, 412
Messagebox statement, 328
Postopen event, 286
Print statement, 326
testing an LSX, 425
using Java Notes classes, 358

exclusion list
for tagging, 570
using prefixes, 570

Execution Control List (ECL), 242
Exiting event

example, 289
for fields, 76

Expand, 634
expanded pseudo language, 578
ExpandView, 633
exporting

for translation, 582, 583
exporting a view, 151
extending Notes with other products

Notes API, 344

F
Field Editor Access Security Option,

232
FieldOffset, 640

fields
(Declarations), 76
(Options), 76
aligning, 85
allow values not in list, 66
authors, 63
colors, 68
computed, 65
computed for display, 65
computed when composed, 65
creating, 57
default focus, 67
default value, 76
deleting, 206
editable, 64
events, 76
Entering event, 76
Exiting event, 76
Field class, 277
field replication, 130
fonts, 68
formula, 63
help information, 67
hide delimiters, 66
HTML attributes, 76
Initialize event, 76
input translation, 76
input validation, 76
multi-value separator, 67
names, 63
number, 63
object, 288
onBlur event, 76
onChange event, 76
onClick event, 76
onFocus event, 76
password, 63
properties, 64
readers, 63
renaming, 206
rich text, 63
security, 67
shared, 61
Terminate event, 76
text, 62
time, 62
using in NotesSQL, 487

file upload control
embedded, 100

folder pane
embedded, 99

folders
access list, 155
creating, 154
description, 111

fonts
for fields, 68

footer, 36
Form Access List, 225
form flow in Approval Cycle, 615
forms, 45

alias, 46
anonymous form, 48
auto launch, 50
background color, 51
Create dialog, 47
creating, 45
default form, 49
events, 55
frameset option, 50
generate HTML for all fields, 49
header and footer, 52
importing graphics, 51
inherit entire document, 49
inherit values, 49
keyboard shortcut, 46
mail send dialog, 49
merge replication conflicts, 48
naming, 46
properties, 45
refresh fields automatically, 49
removing subforms, 79
response, 47
response to response, 47
security, 53
select for display, 81
store form in document, 49
title, 54
using resources, 181
using with NotesSQL, 482
version control, 48

formulas, 272, 293
in Agents, 193
hide-when, 305
using in localization, 595

framesets
creating, 169
for forms, 50
launched by page, 166
sizing, 171

Freelance
OLE, 392

668 Lotus Domino Release 5.0: A Developer’s Handbook

front-end classes, 306
Full text index, 40

location, 258
multi-databases, 268
search, 40
size, 259
updates, 259

functions, 298

G
generate HTML for all fields, 49
GetEmbeddedObject

OLE, 384
GetFirstDocument method, 282, 284
GetFirstItem method, 282
GetNextDocument method, 284
GetObject

OLE, 383
getSession()

and CORBA, 367
GetView method, 282
Global WorkBench, 555
graphic files

supported in layout regions, 83

H
header, 36, 52
help

for fields, 67
hidden views

showing, 129
hide-when formulas, 233, 305
hiding

subforms, 79
views, 116
views from Notes users, 145
views from Web users, 145

horizontal rules, 101
Host, 631
hotspots, 103

alternate text, 107
HTML

attributes for body field, 76
body attributes, 56
head attributes, 55
using in views, 133

HTTP Basic Authentication, 235

I
IDE, 275, 276
ILsiADTControl structure, 409
ImageFormat, 640
importing

translation, 584
importing a view, 153
importing graphics

into forms, 51
importing Java applets, 368
indexing, full-text, 40
Info List, 13
inherit entire document, 49
inherit values, 49
initialization of an LSX, 403
Initialize event, 57

for fields, 76
input from Web in rich text, 70
input translation, 284
input translation for fields, 76
input validation, 284
input validation for fields, 76
installing

NotesSQL, 475
installing an LSX, 427
Integrated Development

Environment, 275, 276
integration of an LSX, 402
Internet Authentication

When to Use Internet Security,
238

J
Java, 200

onUnLoad, 329
using in agents, 194
using JDBC, 502

Java agent, 350, 357
creating a agent, 357

Java applet, 350
Java files, 347
Java Notes classes, 356, 358
Java program, 352
JavaScript, 328, 332

add to form or field, 332
example 1, 331
example 2, 334
example 3, 335
example 4, 336
example 5, 337

JS Header, 55
Library, 332
LiveConnect, 341
Object Hierarchy, 331
onBlur, 329
onChange, 60, 328, 329, 334, 335
onClick, 329
onFocus, 329
onLoad, 55, 329
onReset, 55, 329
onSubmit, 55, 329
onUnload, 55

JavaScript function, 332
JDBC, 502

connecting to Domino, 505
JDBC-ODBC bridge, 502
JS Header, 55

K
keyboard shortcut

forms, 46
keywords

in localization, 598
using in NotesSQL, 489

L
Language databases

creating, 574, 585
Domino Global WorkBench, 559

Language switchbar
Domino Global WorkBench, 557

Launch Buttons, 12
launch options, 38
launching pages, 166, 168
layout regions, 83
LCTEST

testing DB2 connectivity, 441
testing DECS, 440

loading
DECS, 437

Localization
checking size problems, 578
currency symbols, 589
date and time values, 590
limits, 600
preparing a database, 562
preventing translation, 573
process, 556
pseudo language, 565
Roles, 556

Index 669

setting up a project, 562
skipping vs. tagging terms, 587
translation roles, 582
untranslated terms, 577
what is, 555

localization glossary
enabling languages, 581
setting, 564
translating, 580

localization process, 556
localizing

localizing an application, 561
logical errors, 322
Login, 635
Login argument, 632
Lotus Connectors for DECS, 452
LotusScript, 200, 286, 293, 306, 348,

616
(Declarations), 56
(Options), 56
benefits of, 275
client API, 401
DocumentContext property, 202
extending the architecture, 401
functions, 298
instance handle, 401
performance, 298
programming tips, 298
subroutines, 298
using in agents, 194
using in navigators, 160

LotusScript:Data Object, 513, 514,
517

LS:DO, 513, 514, 517
architecture, 519
class library, 529
tracing and debugging, 525
using from the Web, 541
when to use, 520, 551

LS:DO and ODBC, differences, 520
LSX, 276

arguments passing, 416
C header files for, 404
class registration utility, 404
creating of an, 411
data types, 415
design considerations, 408
initialization of, 403
installing, 427
integration, 402
loading, 397
object creation, 403
object deletion, 403

portability, 410
prerequisites, 398
registering classes, 406
registration, 427
termination, 404
testing, 425

LSX Toolkit, 398
structure, 399
utilities, 400

LSXBASE.CPP, 404
LSXBASE.HPP, 404
LSXCOMM.CPP, 404
LSXCOMM.HPP, 404
LSXLODL, 400
LSXREG, 401
LSXRUN, 400, 426
LSXSESS.CPP, 405
LSXSESS.HPP, 405
LSXSESS.TAB, 405
LSXSESSION.CPP, 411
LSXSESSION.HPP, 411
LSXTEST, 400, 425

M
mail send dialog, 49
mapping data types, 525
mapping names for NotesSQL, 481
margins

tables, 93
merge replication conflicts, 48
Messagebox statement, 328
Microsoft ODBC driver, 527
MS Word

OLE, 387
multi-database full text indexed, 268
Multilingual Applications Support,

24
multi-value separator

for fields, 67
multi-valued fields in NotesSQL, 487

N
naming

agents, 187
forms, 46
framesets, 170
pages, 165

naming rules in NotesSQL, 484
naming views, 137
National Language Support

Domino Global WorkBench, 555

Navigator class, 277
navigators

description, 111
embedded, 97

nested tables, 87
creating, 87

New Database dialog box, 29
New Features of Domino Designer,

17
Notes API, 344
Notes classes, 276, 286

Button, 277, 286
examples, 282
Field, 277
hierarchical relation, 281
Navigator, 277
NotesACL, 278
NotesACLEntry, 278, 283
NotesAgent, 278
NotesDatabase, 278, 282, 284
NotesDateRange, 279
NotesDateTime, 279
NotesDbDirectory, 278
NotesDocument, 278, 282, 284
NotesDocumentCollection, 278,

284
NotesEmbeddedObject, 279
NotesForm, 279
NotesInternational, 279
NotesItem, 279, 282
NotesLog, 279
NotesName, 279
NotesNewsLetter, 279
NotesObject, 631
NotesOutline, 280
NotesOutlineEntry, 280
NotesRegistration, 280
NotesReplication, 280
NotesRichTextItem, 279
NotesRichTextParagraphStyle,

280
NotesRichTextTab, 280
NotesRichTextItem, 279
NotesSession, 278, 282, 283
NotesTimer, 279
NotesUIDatabase, 277
NotesUIDocument, 277
NotesUIView, 277
NotesUIWorkspace, 277
NotesView, 278, 282
NotesViewColumn, 278

Notes/FX, 49
NotesSQL, 467

advantages, 473

670 Lotus Domino Release 5.0: A Developer’s Handbook

connecting to data source, 480
data source configuration, 477
features, not supported, 469
installing, 475
limitations, 493
new features, 467
prompting for password, 480
when to use, 474

NotesViewEntry, 280
NotesViewEntryCollection, 280
NotesViewNavigator, 280
Nothing, special value, 284
numbers in views, 147

O
object browser

viewing LSX classes, 397
Objects View, 13, 54
ODBC, 467, 468, 515

unique index, 485
when to use, 516

ODBC access flow, 516
ODBC Administrator, 526
ODBC and LS:DO, differences, 520
ODBC data sources, registering, 523
ODBC drivers, 522
ODBC SQL grammar, 489

exceptions, 492
ODBCConnection, 517, 531
ODBCQuery, 517, 534
ODBCResultSet, 517, 535
OldSearchQuery, 642
OLE, 276, 371

1-2-3, 391
Activate, 385
Approach, 391
CreateObject, 383
Debugging, 379
Determining the classname, 386
DoVerb, 385
Embedding OLE Objects, 385
EmbedObject, 384
Excel, 373
Freelance, 392
GetEmbeddedObject, 384
GetObject, 383
MS Word, 387
SmartSuite, 390
Troubleshooting, 392
Visual Basic, 376
Word Pro, 391

On Error statement, 320
onBlur, 334

onBlur event
for fields, 76

onChange event
for fields, 76

onChangeIndex
 #, 329, 334

onClick event
for fields, 76

onFocus event
for fields, 76

onHelpRequest event, 56
onReset

JavaScript, 55
onResetIndex

 #, 329
onSubmit, 55
onUnload, 55, 329
Option Declare, 301
Option Public, 298, 301
OTHER.CPP, 405
OTHER.HPP, 405
OTHER.TAB, 405
outline control

embedded, 97
outlines, 173

embedding, 176

P
pages, 163

background, 166
creating, 164
design elements not supported,

164
launching, 166, 168
naming, 165

paragraphs
aligning, 69

ParentUNID, 636
Pass-Thru-HTML in views, 134
Password Field, 242
performance, 306, 310

of forms, 305
of LotusScript, 298

personal views, 126
personal-on-first-use views, 126
portability of an LSX, 410
Postmodechange event, 56
Postopen

event, 56
example, 286

Postrecalc event, 57
prerequisites for LSX, 398

Preventing Printing, Forwarding and
Copying of Documents, 227

preventing tagging, 570
preview

in Web browser, 59
print options, 36
Print statement, 326
profile document, 338
Programmer’s Pane, 13
programming a Java program, 356
properties

databases, 33
fields, 64
forms, 45
icon, 33

Pseudo language, 565
pseudo translation

expanded type, 579
reverse type, 573

Pseudo-Translation
Domino Global WorkBench, 573

Public Access
users, 53, 226
views, 119

Q
Query, 642
Queryclose event, 57
Querymodechange event, 56
Queryopen event, 56
QueryOpen form event, 201
QuerySave form event, 201

R
RDBMS, accessing from Notes, 513,

514
Read Access List

Form, 228
Reader Access, 228
real-time data access, 518
rebuilding a translated database, 588
Reference View, 14
refresh fields automatically

in forms, 49
Refresh method, 284, 309
registering ODBC data sources, 523
registration of an LSX, 403, 427
Reload method, 309
removing subforms from

databases, 79
forms, 79

Index 671

Report Database
creating, 565, 566
Domino Global WorkBench, 559

report options, for tagging, 567
reserved fields, 130
reserved names

for views, 116
resources, 179

actions, 183
applets, 182
database script, 183
icons, 183
images, 180
script libraries, 183
shared fields, 182

response
forms, 47

response documents
indenting in views, 117, 147

response message to Web users, 71
Response to Response, 47

forms, 47
restricted agents, 186
Resume statement, 320
rich text field, 284

applet, 70
using in NotesSQL, 488

Roles, 218
run-time errors, 320, 321

S
SaveOptions field

example, 622
scheduling agents, 188
scheduling control

embedded, 99
Script Area, 14
script libraries, 301
search, 40
Search Builder

for agents, 190
views, 114

search conditions for agents, 191
search related URLs, 256
search scope, 266
search site database, 266
search site index, 258, 266
searching

$$ SearchSiteTemplate, 269
$$Return, 260, 264
$$Search, 259, 262
$$SearchTemplate, 265
$$ViewBody, 265

default search form, 259
full text index, 257, 267
search result form, 265
search site index, 258
search site URLs, 257
search view URLs, 256
security, 258
views, 255, 269
Web Search Advanced, 259, 268
Web Search Simple, 259, 268
web site, 255, 269

SearchMax, 642
SearchOrder, 642
SearchThesaurus, 642
SearchWord Variants, 642
Secure Sockets Layer (SSL), 236
security

Application security, 209
fields, 67
forms, 53
Public Access users, 53
searching, 258

security with cookie, 338
setting

localization glossary, 564
window title, 55

shared actions, 183
shared field

debugging, 298
shared views, 126
shutting down

DECS, 437
Signatures, 242
Signing a Database, 245
simple actions, 298

using in agents, 191
sizing framesets, 171
SmartSuite, OLE, 390
sorting documents in views, 122
Source Database

Domino Global WorkBench, 558
SQL Grammar Conformance Level,

469
srchsite.ntf, 266
Start, 633
StartKey, 634
store form

in document, 49
removing, 206

storing documents in databases, 284
subforms, 77
Submit button, 103
subroutines, 298

Synchronization between several
languages

Domino Global WorkBench, 557
Synchronize agent, 561
Synchronizer, 575

Domino Global WorkBench, 561

T
tables, 85

HTML options, 96
margins, 93
style, 91

Tagger
Standalone, 560

Tagging
databases, 560, 566
Domino Global WorkBench, 558,

559
Tagging a Database, 566

templates, 27
advanced, 37
Approval Cycle, 608, 615

temporary variables
using in localization, 594

Terminate event, 57
for fields, 76

testing
a navigator, 160

testing agents, 195
testing an LSX, 425
title of forms, 54
Troubleshooting

OLE, 392

U
UNICODE, 410
unique index for ODBC, 485
Universal Relation in NotesSQL, 481
unread documents

views, 141
unrestricted agents, 186
Untranslated Terms, 577

Domino Global WorkBench, 576
updating a translated database, 588
URL for Domino objects

anchor link, 638
and frames, 633
CreateDocument, 637
DeleteDocument, 637
EditDocument, 637
keywords based URL, 638, 640
Login argument, 635
OpenAbout, 634

672 Lotus Domino Release 5.0: A Developer’s Handbook

OpenAgent, 636
OpenDatabase, 633
OpenDocument, 637
OpenElement, 640
OpenForm, 635, 636
OpenHelp, 634
OpenIcon, 634
opening attachments, 640
opening imported images, 640
opening OLE objects, 641
OpenNavigator, 636
OpenServer, 633
OpenView, 633
SaveDocument, 638
SearchSite, 641
SearchView, 641
syntax, 631
using keys vs universal IDs, 639

Use statement, 302
UseLSX statement, 397, 524
user activity, 36
user scripts, 275, 301
using

Universal Relation, 482
Using Database document, 183
using pages, 167
using the debugger, 325

V
variables

declaration of, 298, 301
naming of, 299

version control, 48
forms, 48

View Access List, 223
view columns

HTML in column formulas, 135
HTML in headers, 135
icons in headers, 135

views
access list, 155
adding HTML to, 136
Advanced tab, 118
alias, 116, 137
Basic tab, 116
calendar type, 122
cascading, 113, 138
changing name, 138
collapsing on open, 143

color, 118
column headings, 118
column properties, 120
copying, 112
creating, 112
default Web layout, 132
description, 111
embedding, 97, 143
exporting, 151
formatting Date/Time values, 146
formatting numbers, 147
hiding, 116, 138
hiding empty categories, 119
hiding from Notes users, 145
hiding from Web users, 145
importing, 153
indenting response documents,

147
inspecting form fields, 129
Java applet for display, 133
localization, 596
naming, 137
open as last-used, 143
Option tab, 117
Pass-Thru-HTML, 134
properties, 116
Public Access, 119
reserved names, 116
restrictions with NotesSQL, 486
Search Builder, 114
Security tab, 119
showing hidden views, 129
showing icons in columns, 121
showing response documents,

117
sorting documents, 122, 148
sorting rules, 149
Style tab, 118
type of, 113
unread documents, 141
used as index in NotesSQL, 485
using categories, 141
using HTML, 133
using on the Web, 131
using with NotesSQL, 482
Web navigation, 136

Viewtemplates
menu actions, 136

Visual Basic, 275, 494
OLE, 376
using NotesSQL, 470

W
Web

using agents, 200
Web users

Defining, 239
WebQueryClose, 293
WebQueryOpen, 201, 293
WebQueryOpen event, 56
WebQuerySave, 201
WebQuerySave event, 56
Window Tabs, 12
window title, 55
Word Pro

OLE, 391
work pane, 11
WorkBench

Domino Global WorkBench, 559
workflow, 607

concepts, 607
properties, 616

WYSIWYG, 164

Index 673

674 Lotus Domino Release 5.0: A Developer’s Handbook

ITSO Redbook Evaluation

Lotus Domino Release 5.0: A Developer’s Handbook SG24-5331-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and fax it to: USA International Access Code +1 914 432 8264 or:

� Use the online evaluation form at http://www.redbooks.ibm.com

� Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?

__Customer __Business Partner __Solution Developer __IBM employee

__None of the above

Please rate your overall satisfaction with this book using the scale:

(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ________________

Please answer the following questions:

Was this redbook published in time for your needs? Yes _________ No ________

If no, please explain:

__

__

__

__

What other redbooks would you like to see published?

__

__

__

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK)

__

__

__

__

© Copyright IBM Corp. 1999

675

676

	Lotus Domino Release 5.0: A Developer’s Handbook
	Contents
	UNKNOWN
	Preface
	What is Lotus Domino?
	Lotus Domino Designer: An Overview
	Domino Design Elements: Basics
	Forms
	Views, Folders, and Navigators
	Agents
	New R5.0 Design Elements
	Securing Your Application
	Searching
	Programming for Domino
	Advanced Domino Programming
	Development Do’s and Don’ts
	Using Other Database Connectivity Tools
	Introducing DECS and Database Connectivity
	Domino Global WorkBench
	Domino Workflow
	Related ITSO Publications
	How To Get ITSO Redbooks
	Index
	ITSO Redbook Evaluation
	Appendix A Domino URLs
	Appendix B Shortcuts
	Appendix C CORBA Internals
	Special Notices

	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1 What is Lotus Domino?
	Domino R5.0 Server
	Domino Mail Server
	Domino Application Server
	Domino Enterprise Server
	Services Offered by Domino Servers

	Clients for Domino R5.0
	Notes R5.0
	Domino Administrator R5.0

	Summary

	Chapter 2 Lotus Domino Designer: An Overview
	Managing Your Workspace
	The Design Pane
	The Window Tabs
	The Launch Buttons
	The Programmer’s Pane
	The Objects View
	The Reference View
	The Script Area

	Domino Design Elements
	The Domino Database
	Forms
	Subforms
	Views
	Fields
	Shared Fields
	Tables
	Action Buttons

	New Features of Domino Designer
	Outline Designer
	Frameset Designer
	Page Designer
	Domino User Interface Applets
	New Rapid Development Capabilities in IDE

	Industry Standards Support
	Multi-Client Applications Support
	Multilingual Applications Support
	Easy Access to Enterprise Data and Applications

	Chapter 3 Domino Design Elements: Basics
	Domino Databases
	Creating a Database
	Changing the Database Properties

	Using Design Synopses
	Summary

	Chapter 4 Forms
	Forms
	Specifying Form Properties
	Giving the Form a Title
	Objects View

	Creating a Field
	Performing a Test Run
	Sharing and Reusing a Field
	Field Properties
	Rich Text Field (RTF) Applet
	Using the $$Return Field
	Field Events

	Sharing Design Elements With Subforms
	Subform Properties
	Removing Subforms
	Computed Subforms

	Displaying a Different Form to Web Users and Notes Users
	Working With Layout Regions
	Creating a Layout Region

	Working With Collapsible Sections
	Creating a Collapsible Section

	Using Tables
	Create Tables Within Tables
	Merge and Split Cells
	Table Properties

	Embedded Elements
	Embedded Navigators
	Embedded Date Picker
	Embedded Outline Control
	Embedded View
	Embedded Group Scheduling Control
	Embedded Folder Pane
	Embedded File Upload Control

	Other Features of Forms
	Horizontal Rules
	Computed Text
	Buttons, Action Bar Buttons, and Hotspots

	Images Within Forms
	Copying Images
	Importing Pictures
	Using Image Resource
	Alternate Text

	Using CGI Variables
	Table of CGI Variables Supported by Domino
	Using a Field to Capture CGI Variables
	Using a LotusScript Agent to Capture CGI Variables

	Summary

	Chapter 5 Views, Folders, and Navigators
	UNKNOWN
	What is a View?
	What is a Folder?
	What is a Navigator?

	Creating Views
	Working With View Properties
	Editing View Columns
	Creating Calendar Views
	Summary

	Shared and Private Views
	Shared Views
	Shared, Personal-on-First-Use Views
	Personal Views

	Creating a Button on the Action Bar
	Working With Views as a Developer
	Views and the Web
	Using the Default Display
	Using Java Applets for Display
	Using HTML Formatting for Views

	Hints and Tips on Designing Views
	Naming Views
	Overview of Styles
	Identifying Unread Documents
	Using Categories in Views
	Creating an All by Category View
	Presenting Views to Users
	Embedding Views
	Hiding Views
	Formatting Date and Time Columns
	Formatting Numbers in Columns
	Indenting Response Documents
	Sorting Documents in Views
	Exporting and Importing Views

	Designing a Folder
	Managing Access to Views and Folders
	Creating a Read Access List
	Creating a Write Access List

	Using Navigators
	Navigator Objects
	Navigator Actions
	Creating a Navigator
	Adding an Action to a Navigator Object
	Adding an Action Using @Functions or LotusScript
	Testing a Navigator
	Including a Navigator in the View Menu

	Summary

	Chapter 6 New R5.0 Design Elements
	Pages
	Creating a New Page
	Specifying Page Properties
	Using Pages
	Launching Pages

	Framesets
	Creating a Frameset
	Changing the Layout of a Frameset

	Outlines
	Creating a New Outline
	Embedded Outline

	Resources
	Images
	Applets
	Shared Fields
	Script Libraries
	Other

	Summary

	Chapter 7 Agents
	About Agents
	Access Control
	Restricted and Unrestricted Agents

	Creating an Agent
	Naming the Agent
	Scheduling the Agent
	Selecting Documents to be Processed
	Specifying What the Agent Should Do
	Displaying the Agent Pop-up Menu

	Testing an Agent
	Testing an Agent During Development
	Testing an Agent Before Copying it to a Live Database
	Checking the Agent Log
	Debugging Agents

	Disabling Scheduled Agents
	To Disable Individual Agents
	To Disable All Automated Agents in a Database

	Troubleshooting Agents
	Agents and the Web
	Running Multiple Instances of an Agent
	WebQueryOpen and WebQuerySave Agents
	Using the @URLOpen Command to Call Agents
	Using a LotusScript Agent to Capture CGI Variables
	Creating a Web Page Counter

	Using Agents — Advanced Topics
	Summary

	Chapter 8 Securing Your Application
	Controlling Access to Domino Data
	Overview of Domino Security Architecture

	Using the Access Control List to Control Access to an Application
	Setting Up and Refining the ACL
	Roles in the ACL
	Enforce Consistent ACL
	Maximum Internet Name and Password Access
	Changing the ACL Programmatically

	Using Outline Control to Hide Parts of an Application
	Using Directory Link Files to Control Access to an Application
	Controlling Access to Views and Forms
	Controlling Access to Views
	Controlling Access to Forms
	Preventing Printing, Forwarding, and Copying of Documents

	Controlling Access to Documents
	Read Access
	Editor Access
	Combining Readers and Authors Fields
	Controlled Access Sections
	Use of Hide-When Formulas
	Using Encryption for Field Security

	Authentication on the Web
	HTTP Basic Authentication
	Secure Sockets Layer (SSL)
	Domino and SSL
	When to Use Internet Security
	Defining Web Users

	Programming Considerations
	Using @UserRoles
	Using @UserName
	Using @ClientType
	Using @UserNameList
	Password Field
	Controlling if Users Paste Documents into Database
	Hiding the Design of a Database

	Other Security Options and Considerations
	Using Signatures for Security
	Access Control for HTML and Other Files
	APIs for Customized Authentication, Encryption, and Signing
	Backup and Restore

	Developing a Plan for Securing Your Application
	Key Design Issues
	Distinguishing True Security Features

	Summary

	Chapter 9 Searching
	Adding Search Capabilities to Your Web Site
	Search-Related URLs
	Search View URLs
	Search Site URLs

	Full Text Indexing
	Customizing Search and Result Forms
	Creating a TeamRoom Search
	Customizing Search Result Forms

	Search Site Databases
	Creating a Search Site Database
	Multi-Database Full Text Indexes
	How Users Search Using a Search Site Database
	Customizing Search Site Result Forms

	Summary

	Chapter 10 Programming for Domino
	Programming in Notes
	Simple Actions
	Formula Language
	LotusScript

	The Domino Object Model
	Domino Front-End UI Objects
	Domino Back-End Objects
	Object Hierarchy
	Using Domino Objects from LotusScript
	Understanding Front-end and Back-end Classes
	Using Domino Objects From Java

	Programming With LotusScript
	The Event Model
	Event Type and Sequence
	Action Object
	Using LotusScript in Web Applications
	How Scripts and Formulas Are Executed

	LotusScript Programming Tips and Considerations
	General Suggestions
	Use Consistent Variable Names
	Reserved Fields
	Using Script Libraries
	Using a Template Database
	Catching Errors at Compile Time
	Improving Form Performance
	When to Use Formulas and LotusScript
	Using the Evaluate Function to Combine LotusScript and Formulas
	Making Field Value Changes Effective
	Using Validation Formulas and QuerySave
	Working With a Rich Text Item and Rich Text Style
	New Domino Objects in Domino R5.0
	Error Handling
	Using the Debugger
	How to Enable the Debugger
	Tracing Programs Without a Debugger

	Using JavaScript
	Using JavaScript in Domino Design Elements
	Where JavaScript Gives You Access in Domino
	Examples of Adding JavaScript to Forms
	Cookies and Domino

	LiveConnect — JavaScript Access to the Domino Classes
	Accessing an Applet From JavaScript
	Accessing CORBA Applets via LiveConnect

	External Tools
	The Notes API

	Summary

	Chapter 11 Advanced Domino Programming
	Java
	Agents, Applets, Applications, and Servlets
	Adding CORBA to the Picture
	Benefits of Using CORBA
	How and When to Use CORBA
	Compiling and Running a Java Program
	Runtime Requirements
	Remote Calls to lotus.notes.noi Package
	Applet Calls to lotus.notes.noi Package
	Creating a Java Agent

	CORBA/IIOP
	Benefits of Using CORBA
	CORBA Architecture
	Internet Inter-ORB Protocol (IIOP)
	CORBA and Domino
	Coding the CORBA Applet

	Domino and OLE Automation
	Accessing the Domino Object Model Using OLE Automation
	Sending Information From Excel Using Domino
	More Examples
	Runtime Errors and Debugging

	Accessing Other Applications From Notes Using OLE Automation
	Classes of OLE Objects
	LotusScript Functions and Methods to Use for OLE Applications
	Embedding OLE Objects
	Using OLE Automation Without Embedding
	Troubleshooting
	Considerations Before Using OLE Embedding/Automation

	The Lotus Custom Object Toolkit (formerly known as the LSX Toolkit)
	What Is a Lotus Custom Object?

	Using an LSX
	Using the LSX Toolkit
	Overview
	What the LSX Toolkit Contains
	Considering the Toolkit Design
	Understanding the C++ LSX Class Framework
	LSX Design Decisions

	Creating an LSX
	Using LSX Data Types
	Using Data Type Descriptions
	Accessing LSX Class Method Arguments
	Accessing LSX Class Property Arguments
	Using LotusScript System Services

	Testing an LSX
	The LSXTEST Tool
	The LSXRUN Tool

	Deploying an LSX
	The LSX Runtime Environment
	LSX Installation
	LSX Registration

	Summary

	Chapter 12 Development Do’s and Don’ts
	Before You Write a Single Line of Code
	Lesson 1 - Getting a Business Sponsor
	Lesson 2 - Communication
	Lesson 3 - Ensure That There is a Real Business Need
	Lesson 4 - Understanding the Deliverables
	Lesson 5 - Planning Your Application
	Lesson 6 - Even Domino Has Limitations
	Lesson 7 - Project Scope Creep

	Creating Your Application
	Lesson 1 - Use Professional Graphics
	Lesson 2 - Design the Outlook as Thoroughly as Possible
	Lesson 3 - Try to Standardize on a Web Browser
	Lesson 4 - Comment Your Code
	Lesson 5 - Try to Avoid Hard Coding
	Lesson 6 - Use the Appropriate Design Elements and Events
	Lesson 7 - Provide Meaningful Error Messages
	Lesson 8 - Document Your Application
	Lesson 9 - Be Aware of Performance Options

	Handing Over Your Application to Production
	Lesson 1 - Perform Quality Assurance of the Application
	Lesson 2 - Supply an Installation Test Verification Case
	Lesson 3 - Document the Application Requirements

	When Your Application is Deployed in Production
	Lesson 1 - Define a Maintenance Server
	Lesson 2 - Get Feedback From Your Users

	Summary

	Chapter 13 Introducing DECS and Database Connectivity
	Installing and Running DECS
	Supported Data Sources
	Setting Up Connectivity to DB2

	Testing Connections With LCTEST
	Running LCTEST

	Configuring DECS
	Using the Connection Server Administrator
	The DECS Administrator Navigator
	Creating a Simple RealTime DB2 Connection
	Creating the Lotus Notes Database
	Creating the Activity Document
	Populating the Lotus Notes Database With Key Data
	Running the DECS Activity
	Accessing More Than One Table

	Lotus Connectors LCO
	Reading Data From an External Source into a Notes Form
	Updating Data From Notes to an External Source

	Summary

	Chapter 14 Using Other Database Connectivity Tools
	NotesSQL
	What is ODBC?
	SQL Grammar Conformance Level of NotesSQL
	Technical Advantages
	When to Use NotesSQL
	Hardware and Software Requirements
	Installing NotesSQL
	Adding a Lotus Notes Data Source
	Connecting to a Data Source
	Mapping Notes Names to SQL Names
	The Universal Relation
	Using SQL Tables from Derived Forms and Views
	Column, Index, Table, and View Names
	Using Notes Views as Indexes
	View Column Definitions
	Data Types
	Summary of Supported ODBC SQL Grammar
	Known Limitations or Problems With NotesSQL
	Example: Accessing Notes From Visual Basic
	Example: Using NotesSQL With Microsoft Active Server Pages (ASP)

	Domino Driver for JDBC
	What is JDBC?
	Domino Driver for JDBC Data Types
	Creating a Connection
	Using IBM VisualAge for Java Version 1.0
	Using IBM WebSphere Application Server
	To Configure and Run Domino Driver for JDBC Using IBM WebSphere

	LotusScript Data Objects and ODBC
	Data Resource Access
	Database Access Facilities
	What is ODBC?

	LotusScript:DataObject (LS:DO)
	What Is LS:DO?
	Concepts
	Architecture
	When to Use LS:DO

	Differences Between LS:DO and ODBC
	Programming Environment
	Functionality
	Performance
	Software Requirements
	Registering ODBC Data Sources
	USELSX Statement to Enable LS:DO
	Mapping Data Types Between RDB and Notes DB
	How to Trace and Debug LS:DO
	LS:DO Class Library

	Server Side Processing for Web Applications
	How Does This Work?
	Digging Deeper
	Running Multiple Instances of an Agent

	Using @DB Functions to Access Other Databases Through ODBC
	When to Use
	How to Use @DB Functions
	@DBColumn
	@DBLookup
	@DBCommand

	Summary

	Chapter 15 Domino Global WorkBench
	Concepts, Databases, and Tools in Domino Global WorkBench
	Domino Global WorkBench Databases
	What is Tagging?
	The WorkBench
	The Standalone Tagger
	The Synchronizer

	Localizing an Application
	Setting up the Project and Tagging the Database
	Running Checks Using Pseudo-Translation
	Preparing the Glossary for Translation
	Translation
	Building Language Databases
	Skipping Terms During Tagging Versus Marking Terms as “Do Not Translate”
	The Difference Between Updating and Rebuilding

	Preparing Your Database — Tips for Developers
	In General
	Use Aliases
	Temporary Variables
	Use Formulas Instead of Simple Actions
	Hide-When Formulas
	Exclude Paragraphs From Translation Using the DO_NOT_TAG Style
	Avoid Shared/Personal on First Use Folders or Views
	Concatenated Sentences
	Handling Translatable Lists
	Keywords
	Fonts
	Pay Attention to Length Limitations
	LotusScript
	Keep Translators Informed

	Preparing an Existing Database
	Make a Backup
	Create a Design Synopsis

	Summary

	Chapter 16 Domino Workflow
	What is Workflow?
	Workflow Design Considerations

	Creating a Database Using the Approval Cycle Template
	Using the Workflow Document
	Working With the Request

	Approval Cycle Database: Design
	How Does a Form Flow?
	How Is the Approval Cycle Database Organized?

	A Closer Look at the ApprovalLogic Subform
	The Major Fields
	Creating a New Request
	Submitting a New Form for Approval
	Approving a Request
	Denying a Request

	Summary

	Appendix A Domino URLs
	UNKNOWN
	Domino URL Command Syntax
	Opening Servers, Databases, and Views
	Opening Framesets, Pages, Forms, Navigators, and Agents
	Opening, Editing, and Deleting Documents
	Opening an Anchor Link
	Opening Documents by Key
	Advantages of Using Keys Instead of Universal ID
	Searching for Text with Domino Search URLs

	Appendix B Shortcuts
	UNKNOWN
	Workspace Keys
	Function Keys
	Dialog Boxes
	Keys for Editing Documents or Designing Domino Objects

	Appendix C CORBA Internals
	UNKNOWN
	CORBA Objects

	Special Notices
	Related ITSO Publications
	ITSO Lotus Publications
	Other Lotus-Related ITSO Publications
	Redbooks on CD-ROMs

	How to Get ITSO Redbooks
	IBM Intranet for Employees

	Index
	ITSO Redbook Evaluation

